
Scientific Programming 11 (2003) 57–66 57
IOS Press

Mixed-language high-performance
computing for plasma simulations

Quanming Lu and Vladimir Getov∗
School of Computer Science, University of Westminster, Watford Road, Northwick Park, Harrow HA1 3TP, UK

Abstract. Java is receiving increasing attention as the most popular platform for distributed computing. However, programmers
are still reluctant to embrace Java as a tool for writing scientific and engineering applications due to its still noticeable performance
drawbacks compared with other programming languages such as Fortran or C. In this paper, we present a hybrid Java/Fortran
implementation of a parallel particle-in-cell (PIC) algorithm for plasma simulations. In our approach, the time-consuming
components of this application are designed and implemented as Fortran subroutines, while less calculation-intensive components
usually involved in building the user interface are written in Java. The two types of software modules have been glued together
using the Java native interface (JNI). Our mixed-language PIC code was tested and its performance compared with pure Java and
Fortran versions of the same algorithm on a Sun E6500 SMP system and a Linux cluster of Pentium III machines.

Keywords: Java, mixed-language programming, PIC simulation codes, Fortran, high performance computing

1. Introduction

Since its formal introduction in 1995, Java has made
extraordinarily rapid progress and has been widely em-
braced as the programming language of choice for state-
of-the-art software development. What makes Java
special, but also controversial, is that it is not just a lan-
guage. Java is also a virtual platform that is not chained
to a particular microprocessor architecture or operating
system, as the so-called native platforms are. Develop-
ers do not have to rewrite or even recompile their Java
programs to achieve compatibility with the wide range
of currently available computer systems. This saves a
lot of work, and gives the users unprecedented freedom
to choose the native platforms they want. In order to
achieve this, Java requires an extra layer of software,
called the Java virtual machine (JVM), to make all na-
tive platforms look the same to Java. The Java source
code is first compiled into platform independent byte-
code, which is then interpreted by the JVM. Therefore,

∗Corresponding author: Vladimir Getov, School of Computer
Science, University of Westminster, Watford Road, Northwick Park,
Harrow HA1 3TP, UK. Tel.: +44 207 911 5917; Fax: +44 207 911
5906; E-mail: V.S.Getov@wmin.ac.uk.

the same bytecode can execute on any platform run-
ning a JVM [5]. However, this characteristic of very
high portability is also responsible for Javafls perfor-
mance problems. This is one of the main reasons why
the Java platform is generally considered unsuitable for
scientific and engineering computing [14].

Nevertheless, as a programming language, Java has
some attractive features for high-performance comput-
ing. For example, independent threads may be used
for programming in Java and then scheduled on dif-
ferent processors by a suitable runtime environment.
These built-in mechanisms for parallel processing are
well suited for high-performance computing on shared
memory machines. Besides these advantages, Java also
supports Internet communications and protocols such
as sockets and the Remote Method Invocation (RMI)
interface. In general, this enables users to solve com-
plex scientific and engineering problems remotely us-
ing client-server systems. Recently, with the boost
of Internet, such kind of high-performance computing
over Internet is becoming more and more popular. A
good example of this tendency is the Netsolve project
developed at the University of Tennessee [1]. At the
same time Java also provides plenty of graphical com-
ponents such as graphical user interface (GUI) design

ISSN 1058-9244/03/$8.00  2003 – IOS Press. All rights reserved

58 Q. Lu and V. Getov / Mixed-language high-performance computing for plasma simulations

facilities including 3-dimensional graphics application
programmers interfaces (APIs). In recent years, the at-
tractiveness and suitability of Java for large-scale com-
puting has been also encouraged by the international
Java Grande forum. Since 1998, this forum has been
coordinating the community efforts to standardize vari-
ous aspects of Java that support high-performancecom-
puting and to ensure that its future development is more
appropriate for scientific applications [11].

One way to overcome the performance drawbacks
of Java is to use static Java compilers, such as IBM’s
High-Performance Compiler for Java (HPCJ), which
generates optimized native code for the RS6000 and
Pentium architectures [17]. Another choice is to use
mixed-language programming techniques through JNI
where some time-consuming parts of the Java source
code are replaced with subroutines written in a high-
performance computer language such as Fortran or
C [12]. This is what we have done not only for per-
formance reasons, but also because of software engi-
neering considerations. Since Java is a relatively new
language, it lacks the extensive scientific libraries that
have been developed during the years for other lan-
guages like Fortran and C. Using our mixed-language
methodology, allows the wealth of existing Fortran and
C codes to be reused at virtually no extra cost when
writing new applications in Java [4,10].

In this paper, we present our design, implementation,
and performance evaluation of both a 2-dimensional
and a 3-dimensional mixed Java/Fortran language PIC
codes. Some of the details of the PIC algorithm and
its parallel version are described in Section 2, while
the mixed-language code design and implementation
are presented in Sections 3 and 4 respectively. Final-
ly, Section 5 summarizes our performance results col-
lected on two different parallel computing platforms.
For the sake of simplicity, most of the following dis-
cussions involve only the 2-dimensional PIC code, but
similar results for the 3-dimensional version can easily
be inferred.

2. PIC simulation skeleton algorithm

The parallel plasma simulation we have started with
originally is a skeleton PIC code which was developed
by Decyk for benchmarking purposes and evaluation
of new algorithms [6]. It uses the electrostatic approx-
imation where magnetic fields are neglected. There-
fore, only electrons are being moved during simulation
experiments. In this situation, the electrons move in

the electric fields which are interpolated from the grid
points and can only deposit their charges to grid points.
After getting the charge density, the electric fields can
be calculated by solving the Poisson’s equation using
the Fast Fourier Transformation (FFT) method. The
periodical boundary condition is applied when imple-
menting this PIC simulation, and the only diagnostics
of our code are the particle and field energies. The
quadratic spline function is used for the interpolation
between grid points and particles, and all the variables
are in 64-bit precision.

The physical problem in our particular case is the
plasma beam instability where 10% of the particles
constitute a beam whose velocity is five times higher
than the thermal velocity of the background electrons.
Although this code has been deliberately kept as small
as possible, it includes the three essential components
of a PIC simulation, namely advancing the particles,
depositing the charge, and solving the electric fields.
The parallel implementation uses domain decomposi-
tion techniques for porting the PIC code on parallel
platforms [9,13]. In this case, different spatial regions
are allocated on different processors according to the
adopted domain decomposition technique and subse-
quently the particles are assigned to processors accord-
ing to the spatial regions they are belonging to. As
particles move from one region to another, they are also
re-assigned to the processor which is associated with
the new region. A one-dimensional domain decompo-
sition as shown in Fig. 1 is used in our code. The global
domain is partitioned evenly into several sub-domains
(in Fig. 1 the number of sub-domains is 4). Each sub-
domain together with its associated electric fields and
particles are assigned to a single processor.

3. Mixed Java/Fortran code design

Java is a modern programming language which
supports the object-oriented programming (OOP)
paradigm. It can encapsulate data (attributes) and
methods (behaviors) into objects where the data and
the methods of an object are intimately tied together.
Objects have the property of information hiding. This
means that although objects may know how to com-
municate with one another across well-defined inter-
faces, they are not normally allowed to know what is
the exact internal implementation of the other objects.
Thus, implementation details are hidden with the ob-
jects themselves. Java programmers create their own
user-defined types called classes to instantiate objects.

Q. Lu and V. Getov / Mixed-language high-performance computing for plasma simulations 59

Particle Data

x(npp)
...
u(npp)
...

Grid Data
fx(nx,ny)
...

Y

X

Processor 4

Processor 3

Processor 2

Processor 1

Fig. 1. Grid and particle partitioning.

Each class contains data as well as the set of methods
that manipulate this data. The data components of a
class are called instance variables. In object-oriented
languages like Java, one can create a new class from an
existing class. The new class inherits the attributes and
the behaviors of the existing class. Then programmers
can add new attributes and behaviors or override super-
class behaviors to customize the class in order to meet
their needs. This property is called inheritance. In
addition, Java also supports overloading which means
that several methods of the same name can be defined as
long as these methods have different sets of parameters.
All these capabilities make scientific programs written
in Java easier to understand, modify, share, explain and
extend. As a result, much more ambitious program-
ming problems can be attacked in a manageable way
using the object-oriented approach [7,8,16].

The skeleton parallel PIC simulation code was origi-
nally written using Fortran with explicit message pass-
ing based on the message-passing interface (MPI) [6].
Recently, it was implemented in Java with the mpiJava
library for message passing [15]. The mpiJava package
is a reference implementation of the message passing
for Java (MPJ) API [3], which was developed as part
of the Java Grande forum activities. Using JNI, it is
designed and implemented as a wrapper software lay-
er to an existing MPI library [2]. Its purpose for de-
velopment has been to provide Java programmers with
MPI-like functionality for parallel computing which is
not part of the standard Java platform.

There are two main kinds of data structures in our PIC
simulation code. One is associated with the particles
and includes positions and velocities. The other one is
associated with the fields and keeps information about
the charge density and the electric field in real, complex
and Fourier spaces. In line with the two data structures,
we can construct two main classes – plasma and field –
both of which extend from the same class named param.
The param class defines some basic parameters such as
the number of particles, the number of grid points, etc.,
which other classes will use.

The plasma class declares the particle data as its
private data and owns four methods: the constructor
method is used to initialize the particle positions and
velocities; the push method interpolates the fields from
grid points to particles, then moves particles; the dist
method assigns the particles who leave this sub-domain
to others; the deposit method deposits particle charges
to grid points in order to obtain the charge density. The
field class declares some private data and four methods:
the constructor method defines some arrays which will
be used by other methods; the cppfp method transforms
the electric fields from real space to complex space
and vice versa; the fft method transforms fields from
complex space to Fourier space and vice versa; the
pois method solves the Poisson’s equation in Fourier
space. Here we don’t declare the field data as private
data of the field class because we will use them for
communication between classes as well as inside the
class. The basic structure of the parallel PIC code is
illustrated in Fig. 2, while the details of its pure Java

60 Q. Lu and V. Getov / Mixed-language high-performance computing for plasma simulations

Field Manager
(field.cppfp)

IFFT
(field.fft)

Poisson
(field.pois)

FFT
(field.fft)

Field Manager
(field.cppfp)

Deposit
(plasma.depost)

Particle Manager
(plasma.dist)

Acceleration
(plasma.push)

Fig. 2. Structure of the PIC simulation algorithm.

implementation can be found in [15]. It is a main
loop containing the following phases: acceleration,
field manager, deposit, field manager, FFT, Poisson
solver, IFFT and field manager. For completeness, their
correspondent Java methods are also shown on the same
figure. There are actually two field managers – one
doing field transformations from real space to complex
space, and the other one responsible for the reverse
process. Both field managers, however, use the same
Java method (cppfp) with an integer key to distinguish
between them. The FFT and IFFT phases correspond
to field transformations from complex to Fourier space
and from Fourier space to complex space respectively.
Again, they use the same Java method (fft) with the
same mechanism to distinguish between the two as in
the cppfp method.

Although the PIC code in pure Java is concise and
easy to understand and modify, the results show that its
performance is only about 20% of that for the Fortran
version. Of course, Fortran has been the language of
choice for scientific computing for many years, which
is one of the main reasons why the scientists are re-
luctant to do scientific computing in Java. Fortunate-
ly, the Java platform provides the JNI API. It allows
a Java code that runs within the JVM to operate with
applications and libraries written in other languages.
The evaluation results for the pure Java version show
that the methods push and deposit consume over 95%
of the total runtime on a single processor. Therefore,
we decided to replace these two methods with Fortran
subroutines. The new mixed-language version first cre-
ates the object codes for the two Fortran subroutines
with the Fortran compiler, and then invokes these ob-
ject codes through JNI when running the Java code on
the JVM.

4. Implementation details

The execution procedure of our mixed Java/Fortran
PIC code is illustrated in Fig. 3. It shows the main
steps for compiling Fortran and Java modules separate-
ly and the way they are linked at runtime using JNI.
Those steps are described below, giving also some more
implementation details.

(1) The object codes for the Fortran subroutines
push and deposit are created with the Fortran
compiler.

(2) The first two native methods Jnideposit and Jni-
push in the plasma class are declared as in Fig. 4,
where x and y are the particle positions, vx and
vy are the particle velocities, ql is the charge
density, and fxl and fyl are the electric fields.
Compiling this Java source file using the javac
compiler will generate a plasma.class file. Then,
we run javah with the jni option on in order to
create a header file plasma.h.

(3) When writing the Java native method implemen-
tation, special care should be taken to interface
properly to the Fortran modules. An example for
invoking the Fortran subroutine deposit through
JNI is given in Fig. 5. Note, that it must include
the plasma.h header file.
Then, using the C compiler we compile the
above file while also linking the Fortran object
codes to build a shared library called libparti-
cle.so.

(4) After completing the above steps, while running
on a JVM, one can invoke Fortran subroutines
from the main Java loop of the PIC code as shown
in Fig. 6.

At first sight, it appears that adopting the above
mixed Java/Fortran programming approach should not

Q. Lu and V. Getov / Mixed-language high-performance computing for plasma simulations 61

Fig. 3. Block diagram of the mixed Java/Fortran language PIC code.

class plasma{

 ……

 public native void Javadeposit(double[] x,double[] y,double[] ql);

 public native double Javapush(double[] x,double[] y,double[] vx,

double[] vy,double [] fxl,double[] fyl);

}

Fig. 4.

create any problems. However, complications stem
from the fact that the Java data formats are in general
different from those in Fortran. When writing mixed-
language applications, this obviously requires data con-
version of both arguments and results. A couple of pe-
culiarities and difficulties encountered while working
on our mixed Java/Fortran code are explained below.

(1) Multi-dimensional arrays: The way array lay-
out is organized in Java is completely differ-
ent in comparison with Fortran, which is a big
problem when passing multi-dimensional arrays
between Java and Fortran. Therefore, we have
changed all multi-dimensional arrays in Java to
one-dimension by rearranging the array index to
make sure that arrays are passed correctly be-
tween Java and Fortran. This also can reduce
the runtime overhead which is incurred because
multi-dimensional arrays in Java must be relo-
cated in memory in order to be made contiguous
before being supplied to Fortran subroutines.

(2) Array indices: By default, arrays in Fortran have
indices starting from 1, while in Java indices
start from 0. When calling existing Fortran sub-

routines that receive or return an array index,
application programmers must be aware of the
difference, which they can hide in the interface
between Java and Fortran. Of course, this small
problem may be overcome by explicitly declar-
ing Fortran arrays with a 0 base, if users are
writing new modules in Fortran 90/95.

5. Performance results

In this section, we report benchmark measure-
ments from running both the 2-dimensional and the 3-
dimensional mixed Java/Fortran PIC codes on a Sun
E6500 and a Linux cluster. We also compare their per-
formance with the corresponding Fortran and Java ver-
sions. The Sun E6500 consists of 30×336 MHz Ultra
Sparc 2 processors with shared memory. Its operating
system during our experiments was Solaris 2.6. We
have used Sun’s Fortran F90 compiler 2.0 with the fol-
lowing compiler options on: “-O5 -fast − xtarget =
ultra2− xcache = 16/32/1: 4096/64/1”. The Java code
ran on the JDK1.3 Java platform, while the message
passing library for parallel computing was Sun MPI

62 Q. Lu and V. Getov / Mixed-language high-performance computing for plasma simulations

#include <stdio.h>

#include "plasma.h"

JNIEXPORT void JNICALL Java_plasma_Jnideposit(

 JNIEnv *env,jobject thisObj,jdoubleArray x, jdoubleArray

y,jdoubleArray q){

 double *x_f,*y_f,*q_f;

 extern void depost2_();

 x_f=(*env)->GetDoubleArrayElements(env,x,NULL);

 y_f=(*env)->GetDoubleArrayElements(env,y,NULL);

 q_f=(*env)->GetDoubleArrayElements(env,q,NULL);

 depost2_(x_f,y_f,q_f);

 (*env)->ReleaseDoubleArrayElements(env,q,q_f,0);

 (*env)->ReleaseDoubleArrayElements(env,x,x_f,JNI_ABORT);

 (*env)->ReleaseDoubleArrayElements(env,y,y_f,JNI_ABORT);

}

Fig. 5.

class pic2d{

 static{

 System.loadLibrary("particle"); //load the native library

 }

 public static void main(String args[]){

 ……

 for(int k=0; k<nloop; k++){

 ……

plasma.Jnipush(x,y,vx,vy,fxl,fyl);

 plasma.Jnideposit(x,y,ql); //invoke Fortran subroutines
 ……
 }
 }
}

Fig. 6.

2.0. The Linux cluster was build out of 16 PC comput-
ers, connected with 100 Mb/s fast Ethernet switches.
Every computer had a 900 MHz Intel Pentium III pro-
cessor with 256 Mbyte of memory. The operating sys-
tem was Redhat Linux 6.2 with the JDK 1.3 Java plat-
form installed, and the Gnu Fortran compiler with the
optimization set at level “-O3”. The message passing

library on the Linux cluster was MPICH 1.2. Both the
pure Java and the mixed Java/Fortran versions needed
an MPJ interface – hence, the mpiJava1.2 package was
installed on both computer systems in order to bind the
Java code to the MPI library.

In our experiments, both the 2-dimensional and the
3-dimensional PIC codes have used the same number

Q. Lu and V. Getov / Mixed-language high-performance computing for plasma simulations 63

Table 1
The total run time in seconds for three versions of the PIC simulation code on a
Sun E6500 and a Linux cluster. (a) 2-dimensional code with 32768 grid points
and 1310720 particles for 325 time steps; (b) 3-dimensional code with 32758
grid points and 294912 particles for 425 time steps

(a)

Number of Sun E6500 PC cluster
processors Fortran Java Mixed Fortran Java Mixed

1 565.46 3849.74 995.92 503.35 1215.02 698.61
2 280.06 1848.26 552.96 248.07 607.24 355.78
4 141.29 921.65 275.87 127.76 317.51 178.27
8 73.39 471.83 138.29 72.61 168.07 97.78

16 44.90 257.07 86.05 47.48 98.05 65.62

(b)

Number of Sun E6500 PC cluster
processors Fortran Java Mixed Fortran Java Mixed

1 821.93 5222.12 870.69 547.21 1339.16 614.27
2 388.88 2567.14 458.81 279.05 660.89 330.04
4 169.36 1275.15 231.72 150.39 350.57 184.81
8 97.38 663.68 147.70 89.57 193.58 115.84

16 58.55 368.08 109.96 55.68 108.78 83.72

(32768) of grid points, while their particle numbers are
1310720 and 294912 respectively. Their total run time
results excluding the initialization time are shown in
Table 1 and plotted in Fig. 7. We ran the 2-dimensional
version for 325 time-steps and the 3-dimensional ver-
sion for 425 time-steps to ensure that the beam instabil-
ity is fully developed. This is a fair decision, because
the initialization phase is not parallelized in order for
all of the particles to have always the same initial val-
ues regardless of the number of processors. Therefore,
the calculated energy and other results during the ini-
tialization are always the same. This approach is also
useful to uncover subtle bugs.

The results show that the performance of Fortran is
about 6 times higher than that of pure Java, but also
and more importantly that the mixed Java/Fortran ver-
sion can highly improve the Java performance. For
the 2-dimensional code, the mixed version can increase
the Java performance 3–4 times on the Sun E6500 ma-
chine and about 1.7 times on the Linux cluster. It can
attain about 50% of the Fortran performance on the
Sun E6500 and 70% of the Fortran performance on the
Linux cluster. For the 3-dimensional code, the mixed
version can improve the Java performance 4–6 times
on the Sun E6500 and 1.5–2 time on the Linux cluster.
The same 3-dimensional mixed version delivers 50%–
90% of the Fortran performance on the Sun E6500
and 75%–90% of the Fortran performance on the Lin-
ux cluster. When the number of processors increases,
the performance improvement achieved by the mixed
version decreases. The 3-dimensional mixed-language
version demonstrates better this effect, because the For-

tran parts of this code consume less and less percent-
age of the total time when the number of processors
increases.

Another aspect of our performance evaluation
methodology which deserves mentioning is that, dur-
ing the process of the beam instability, some proces-
sors have more particles than others due to the particle
bunch up. This causes load imbalance of about 10%
between different processors at runtime, but we do not
redistribute the particles in that case as this is a relative-
ly small difference. However, for the total benchmark
time of our codes, we report the longest elapsed time
on different processors.

We have also compared specifically the runtime over-
head introduced by the methods push and deposit of
the class plasma across the three versions of our PIC
simulation code – Fortran, pure Java, and mixed. From
these two methods, we can assess how many floating
operations are needed to move one particle during one
iteration. Then, the actual performance – i.e. the float-
ing point operations per second rate – can be calculated
after the real time spent in these two methods in one
benchmarking experiment is known. Measurement re-
sults for both the 2-dimensional and the 3-dimensional
versions of the code are listed in Tables 2(a) and 2(b)
respectively, so that one can draw similar conclusions
for each of them. In addition, one can observe that the
3-dimensional mixed version can deliver higher per-
formance improvements than the 2-dimensional one.
This is because the calculation/communication ratio of
this code is high, resulting in a smaller performance
overhead for the data passing through JNI.

64 Q. Lu and V. Getov / Mixed-language high-performance computing for plasma simulations

0.5 1 2 4 8 16 32
32

64

128

256

512

1024

2048

4096

8192
(a)

a: Java - Sun E6500
b: Java - Linux cluster
c: Mixed - Sun E6500
d: Mixed - Linux cluster
e: Fortran - Sun E6500
f: Fortran - Linux cluster

f
e
d

c
b

a
To

ta
l r

un
 ti

m
e(

s)

Number of processors

0.5 1 2 4 8 16 32
32

64

128

256

512

1024

2048

4096

8192
(b)

a: Java - Sun E6500
b: Java - Linux cluster
c: Mixed - Sun E6500
d: Fortran - Sun E6500
e: Mixed - Linux cluster
f: Fortran - Linux cluster

f
e
d
c
b

a

To
ta

l r
un

 ti
m

e(
s)

Number of processors

Fig. 7. Total run time in seconds versus number of processors for different versions of the parallel PIC code on a Sun E6500 and a Linux cluster:
(a) 2-dimensional code with 32768 grid points and 1310720 particles for 325 time-steps; (b) 3-dimensional code with 32758 grid points and
294912 particles for 425 time-steps.

6. Conclusion

In this paper, we describe a skeleton for object-
oriented PIC simulations in Java. Thanks to the object-
oriented features of Java, one can easier develop more
ambitious PIC simulations based on this skeleton code.
We also address the main obstacle on the way to use
Java for scientific computing – its relatively low per-

formance. There are two kinds of solutions for this
drawback. One is to use native code compilers which
produce machine specific executables from Java source
code such as IBM’s HPCJ. The other one is to use
mixed-language programming techniques to replace
some of the time-consuming Java methods with sub-
routines or functions in other high-performance com-
puter languages such as Fortran or C. This is what we

Q. Lu and V. Getov / Mixed-language high-performance computing for plasma simulations 65

Table 2
The overall performance in Mflop/s for three versions of the PIC simu-
lation code on a Sun E6500 and a Linux cluster. (a) 2-dimensional code
with 32768 grid points and 1310720 particles for 325 time steps; (b) 3-
dimensional code with 32758 grid points and 294912 particles for 425 time
steps

(a)

Number of Sun E6500 PC cluster
processors Fortran Java Mixed Fortran Java Mixed

1 95.3 13.9 56.3 107.3 44.0 77.7
2 199.7 29.1 104.8 227.2 88.5 160.3
4 395.5 58.7 211.0 438.2 171.4 324.6
8 786.1 116.0 442.5 845.8 331.3 621.9

16 1527.1 215.3 774.5 1389.6 585.9 771.8

(b)

Number of Sun E6500 PC cluster
processors Fortran Java Mixed Fortran Java Mixed

1 62.1 9.4 61.1 93.6 37.8 85.8
2 139.2 19.2 137.2 186.2 78.6 166.3
4 319.8 38.6 284.7 365.5 152.8 315.1
8 591.2 74.2 515.8 660.1 293.1 545.5

16 1200.8 133.8 925.7 1019.4 563.5 795.3

have done and report in this paper. However, both
of the above approaches sacrifice the Java portability
characteristics across different platforms.

In our work, we have used a PIC plasma simulation
code to demonstrate and evaluate the mixed-language
approach. In our mixed-language version of the PIC
simulation code, we use the most widely used scientif-
ic computing language Fortran to implement the most
time-consuming particle acceleration and charge depo-
sition subroutines. In turn, these are called from Ja-
va through JNI. Finally, the performance of this mixed
Java/Fortran PIC code was measured and compared
on both single and multiple processors computer plat-
forms. The results show that the mixed Java/Fortran
version can highly improve the performance of this
application and achieve 70–80% of the pure Fortran
performance without much programming efforts. No
doubt, more recent and future JVM implementations
will further improve these results and make the perfor-
mance difference negligible.

The mixed-language approach can help to overcome
a significant part of Java’s low performance problems.
Our experiments demonstrate that it can also be used
for scientific computing by identifying the hot spots of
an application and implement those in Fortran, while
using Java for the rest of the code. The price to be paid
in that case is that the mixed-language code does not
preserve the architecture independence features of pure
Java. However, it gives the opportunity to use other
attractive Java characteristics such as powerful GUIs,
which are becoming more important in modern scien-

tific computing. This would definitely be an advan-
tage in many cases as it helps manipulate and visualize
much easier the data obtained from computer simula-
tions. We have already obtained some initial results in
this area after adding some basic graphical functions to
our Java/Fortran PIC codes.

The same mixed-language methodology can be used
to bind Java with the existing scientific libraries writ-
ten in other computer languages – thus, making those
libraries available from Java now. Such an approach
would definitely help Java gain acceptance as a scien-
tific computing language well before the key scientific
libraries become available in pure Java.

Acknowledgements

The authors would like to thank the University of
Wales – Cardiff for the use of their computer systems.
Special thanks go also to Bryan Carpenter at Indiana
University for his help in the installation of mpiJava1.2
on Sun E6500. This work was financed partly by the
HEFCE in the UK under the NFF initiative.

References

[1] D.C. Arnold and J. Dongarra, The NetSolve Environment:
Progressing Towards the Seamless Grid, in: Proceedings of
2000 International Conference on Parallel Processing (ICPP-
2000), Toronto Canada, August 21–24, 2000.

66 Q. Lu and V. Getov / Mixed-language high-performance computing for plasma simulations

[2] M. Baker, B. Carpenter, G. Fox, S.H. Ko and S. Lim, mpiJava:
An Object-Oriented Java interface to MPI, in: Proceedings of
International Workshop on Java for Parallel and Distributed
Computing, IPPS/SPDP 1999, San Juan, Puerto Rico, April
1999.

[3] B. Carpenter, V. Getov, G. Judd, T. Skjellum and G. Fox, MPJ:
MPI-like message passing for Java, Concurrency: Practice
and Experience 12(11) (1999), 1019–1038.

[4] H. Casanova, J. Dongarra and D. Doolin, Java Access to
Numerical Libraries, Concurrency: Practice and Experience
9(11) (1997), 1279–1291.

[5] G. Cornell and C.S. Horstmann, CoreJava, Sunsoft Press,
Mountain View, CA, 1996.

[6] V.K. Decyk, Skeleton PIC codes for parallel computers, Com-
put. Phys. Commun. 87 (1995), 87–94.

[7] V.K. Decyk, C.D. Norton and B.K. Szymanski, How to sup-
port inheritance and run-time polymorphism in Fortran 90,
Comput. Phys. Commun. 115 (1998), 9–17.

[8] D. Flanagan, Java in a nutshell, O’Reilly & Associate, Se-
bastopol, CA, 1997.

[9] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and
D. Walker, Solving Problems on Concurrent Processors,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[10] V.S. Getov, A Mixed-Language Programming Methodology
for High Performance Java Computing, in: The Architecture
of Scientific Software, R. Boisvert and P. Tang, eds, Kluwer
Academic Publishers, 2001, pp. 333–347.

[11] Java Grande Forum web-site, http://www.javagrange.org/.
[12] S. Liang, The Java Native Interface: Programmer’s guide and

specification, Addison-Wesley, 1999.
[13] P.C. Liewer and V.K. Decyk, A general concurrent algorithm

for plasma particle-in-cell codes, J. Comput. Phys. 85 (1989),
302–322.

[14] Q.M. Lu and D.S. Cai, Implementation of parallel plasma
particle-in-cell codes on PC cluster, Computer Physics Com-
munications 135 (2001), 93–104.

[15] Q.M. Lu, V.S. Getov and S. Wang, Using Java for plasma PIC
simulations, Proceedings of IPDPS’03 (Workshop on Java for
Parallel and Distributed Computing), Nice, France, April 22–
26, 2003.

[16] C. Norton, B. Szymanski and V.K. Decyk, Object-oriented
parallel computation for plasma simulations, Communications
of the ACM 38(10) (1995), 88–100.

[17] V. Seshadri, IBM high-performance compiler for Java, AIX-
pert Mag., September 1997, http://www.developer.ibm.com/
library/aixpert/.

