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[1] In this study, we use an ice-cream cone model to analyze the geometrical and
kinematical properties of the coronal mass ejections (CMEs). Assuming that in the early
phase CMEs propagate with near-constant speed and angular width, some useful
properties of CMEs, namely the radial speed (v), the angular width (a), and the location at the
heliosphere, can be obtained considering the geometrical shapes of a CME as an ice-cream
cone. This model is improved by (1) using an ice-cream cone to show the near real
configuration of a CME, (2) determining the radial speed via fitting the projected speeds
calculated from the height-time relation in different azimuthal angles, (3) not only applying
to halo CMEs but also applying to nonhalo CMEs.
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1. Introduction

[2] The halo coronal mass ejection (CME), which looked
like a bright cloud surrounding the entire Sun and propa-
gating outward from it in all directions, was first reported by
Howard et al. [1982] and was interpreted as a broad shell or
bubble of dense plasma ejected directly toward (or away
from) the Earth. Now it is generally accepted that halo
CMEs which travel along the Sun-Earth line to the Earth are
associated with disturbances of the geomagnetic fields and
responsible for many large geomagnetic storms. [e.g.,
Gosling et al., 1991; Brueckner et al., 1998; Cane et al.,
2000; Gopalswamy et al., 2000; Webb et al., 2000; Wang et
al., 2002].
[3] Many routine observations of CMEs and the CMEs-

associated solar active regions have been established by the
Large Angle Spectroscopic Coronagraph (LASCO) and
Extreme Ultraviolet Imaging Telescope (EIT) on board the
Solar and Heliospheric Observatory (SOHO) [Brueckner et
al., 1995; Delaboudiniere et al., 1995], the Soft X-ray
Telescope (SXT) on Yohkoh [Tsuneta et al., 1991], etc.
The combinations of LASCO and SOHO/EIT observations
of the halo CMEs make it possible to determine whether a
halo CME is a frontside (toward the Earth) one or a
backside (away from the Earth) one [Plunkett et al.,
2001]. These routine observations are very helpful for
studying the properties of CMEs as well as for space
weather forecasting.
[4] Owing to the notable geomagnetic effects of halo

CMEs, prediction of the arrival of CME in the vicinity of
Earth is critically important in space weather investigations.
The determination of the radial propagation speed and
acceleration of the frontside halo CME is necessary for
more accurate space weather forecasting [Zhao et al., 2002].
Gopalswamy et al. [2000] and Gopalswamy [2002] devel-
oped and improved an empirical model to predict the arrival

time of CMEs at 1 AU based on the interplanetary CMEs
detected by Wind spacecraft and their corresponding CMEs
remote-sensed by SOHO. This increased solar wind speed
may be inferred more accurately using this empirical
moldel, if the geometrical and kinematical properties of
halo CMEs (e.g., the angular width and central position
angle of CME, the initial speed of CME) can be determined
[Michalek et al., 2004]. However, the angular width and the
initial speed of CME obtained directly from the measure-
ment of the observation of LASCO are only the projected
angle and speed on the sky plane. They can not be deemed
as the real parameters of CME unless the CME is a
broadside one, whose latitudinal span of their bright feature
in the sky plane being less than 120� so that the angular
width and the central position angle can be directly mea-
sured based on their latitudinal span [Zhao et al., 2002].
[5] The projection of many broadside CMEs on the sky

plane observed by LASCO coronagraph looks like a cone
shape, which can maintain this shape and propagation
almost radially in the view fields of LASCO/C2 and
LASCO/C3. At the same time, the angular width of many
broadside CMEs remains constant during their expansion
outward [Webb et al., 1997]. These facts indicate that the
shell of mass is nearly symmetric about the central position
of CMEs. Some authors suggested that the geometrical
properties of CMEs may be described by a cone model
[Howard et al., 1982; Fisher and Munro, 1984; Leblanc et
al., 2001; Zhao et al., 2002; Michalek and Gopalswamy,
2003; Xie et al., 2004].
[6] Fisher and Munro [1984] have proposed a so-called

ice-cream cone model to depict the mass and other physical
properties used in the specification of the coronal transient
model, but in practice this model is suitable only for the
broadside CMEs, whose footpoints are located in the limb
of the Sun. Leblanc et al. [2001] have converted the
measured CME progressions in the sky plane into the
progressions in the radial direction for the first time, in
the light of a new technique which is based on an ice-cream
cone like model. However, in their model, the angular width
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of the CME is estimated to a statistical value, and it cannot
reflect the characteristics of an individual CME. Recently,
Zhao et al. [2002] has developed a cone model to estimate
the geometrical and kinematical properties of the three-
dimensional halo CMEs, using coordinate conversion be-
tween the cone system and the heliographic system, and
adjusting three free parameters iteratively to best match the
LASCO observations. To avoid the ambiguity introduced by
visual fitting and computational time-consumption of
Zhao’s model, Xie et al. [2004] has presented an innovative
analytical method to determine the relation of cone CME
angular width and orientation to its elliptical sky-plane
projection and the relation of CME actual radial speed to
projection speeds at different position angles. Michalek and
Gopalswamy [2003] has also given a simple cone model by
measurements of the sky plane speeds and the times of the
first appearance of the full halo CMEs above opposite
limbs. Using the model, Michalek et al. [2004] have studied
the arrival time of the halo CMEs in the vicinity of the
Earth. The accuracy of prediction is improved.
[7] In this paper, we will present an ice-cream cone model

to estimate the parameters (velocity, angle width, and source
location) of the CMEs. This model can exhibit the near real
geometrical characteristics of CME from its projected
speeds measured at different directions in the sky plane.
[8] The structure of the paper is outlined as follows. In

section 2, the model is described in detail. Section 3
examines the validity of this ice-cream cone model. Finally,
we present discussion and conclusions in section 4.

2. Ice-Cream Cone Model

[9] Assuming that a CME is isotropic and is emitted from
a point, one can image that the front edge of the CME
should form a sphere-like shape. Thus we consider that
(1) the shape of CMEs is a symmetrical ice-cream cone,
combining a cone with a sphere. The apex of the cone
and the center of the sphere are all located at the center
of the Sun. Figure 1 shows a sketch map of the ice-cream
cone model. (2) The propagations of CMEs are nearly
radial. (3) The velocities and angular widths of the CMEs
remain constant. Then, the projected front edge of CMEs in
the sky plane is determined by the projection of the sphere
cross section of the ice-cream cone. The widths, velocities,
and the source location of CMEs can be estimated through
the observation of LASCO/C2 and LASCO/C3.
[10] First, we introduce a heliocentric coordinate system

(xh, yh, zh), where the xh axis points to the Earth and (yh, zh)
defines the sky plane. Assuming that we have known the
orientation of the ice-cream cone (q0, f0) in heliocentric
coordinate, where q0 and f0 are the colatitude and longitude
measured from the central meridian, we can establish the
cone coordinate system (xc, yc, zc) through the rotation of
coordinate (xh, yh, zh) as shown in Figure 1. Letting (xh, yh)
plane rotate around the zh through the angle f0, we get a
coordinate (x0, y0, z0). Then the cone coordinate system (xc,
yc, zc) is established by making another rotation of (x0, z0)
around y0 through the angle q0. Note that in cone coordinate
system, zc parallel to the ice-cream cone axes and its
orientation describes the propagation direction of CME.
[11] The transform between the heliocentric coordinate

system (xh, yh, zh) and the cone coordinate system (xc, yc, zc)

can be carried out as

xh

yh
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0
BBBB@
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In the cone coordinate system, the cone equation is easy to
be described as

cos qc � cos
a
2
; ð3Þ

Figure 1. A sketch map of the ice-cream cone model and
the relationship between the heliocentric coordinate system
and the cone coordinate system.
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where a is the angular width of the cone and qc is the angle
measured from the zc axis. Using equation (2), we can get
the cone equation in heliocentric coordinate system

1 � xh cosf0 sin q0 þ yh sinf0 sin q0 þ zh cos q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2h þ y2h þ z2h

q � cos
a
2
: ð4Þ

[12] The ice-cream cone shell is defined as the overlap
area between the cone and a sphere with radius rc, which
should satisfy

1 � xh cosf0 sin q0 þ yh sinf0 sin q0 þ zh cos q0
rc

� cos
a
2

x2h þ y2h þ z2h ¼ r2c

;

8><
>:

ð5Þ

where rc is the heliocentric distance of the CME’s front side.
[13] When the cone has no intersection with the sky

plane, it can be demonstrated that the projected contour of
the sphere cross section in the ice-cream cone model is as
same as the one of the circle cross section in the cone
model. From the equation (5), one can find that the angle d
between an arbitrary generatrix on the cone surface and the
plane of sky (OYhZh plane) satisfies

sin d ¼
cos a

2
cosf0 sin q0 � A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 f0 sin

2 q0 þ A2 � cos2 a
2

q

cos2 f0 sin
2 q0 þ A2

;

ð6Þ

and A is defined by

A ¼ cosy sinf0 sin q0 þ siny cos q0; ð7Þ

where y is the azimuthal angle of a cone generatrix’s
projection in OYhZh plane, measured from yh axis.
[14] One can find that equation (6) has real root for any

given y 2 [0, 2p], if cos
a
2

 cos f0 sinq0. The implication is

that the origin of the coordinate OYhZh is encircled by the

projection of the ice-cream cone on the sky plane. This
CME is a disk-center-covered CME, which includes the
cases of the full halo CME and the disk-center-covered

partial halo CME (that satisfies the condition cos
a
2

 cos f0

sin q0 but does not develop as a full halo in the LASCO
view field).
[15] If cos

a
2
> cos f0 sin q0, equation (6) has real roots

only for yL 
 y 
 yR. The origin of the coordinate OYhZh
is out of the projected region of the ice-cream cone. This
CME is non-disk-center-covered CME. Here, yL = y0 + y�,
yR = y0 + y+, y0 and y± are the azimuthal angle of the
projected ice-cream-cone axis on sky plane and the half-
width of the projected angle of the ice-cream cone on the sky
plane, respectively. One can get

tany0 ¼
cos q0

sin q0 sinf0

ð8Þ

and

cosy� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 a

2
� sin2 q0 cos2 f0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 q0 sin2 f0 þ cos2 q0

q : ð9Þ

[16] In our model, the criteria between a disk-center-
coveredCMEand a non-disk-center-coveredCME iswhether
the projected angular width (PAW) of the ice-cream cone on
the sky plane is greater than 180� or not. The relationship of
cos a

2
= sin q0 cos f0 specifies the boundary between this two

types of CME in the ice-cream cone model. This is different
from the angle of 120�, which is often used in LASCO
observation to distinguish between a haloCMEand a nonhalo
CME. For a disk-center-covered CME, although the origin of
the coordinate OYhZh is encircled by the projected region of
the ice-cream cone, whether the projection of the ice-cream
cone in the view of LASCO observation is a full halo or not,
depending on the orientation, angle width, and the radial
distance of the ice-cream cone because the projected shape of

Table 1. Ice-Cream Cone Model for Possible Cases of CMEs

Types of CME Projection Speed vp

Disk-center-covered
CMEs

(cos
a
2

 sin q0 cos f0)

No intersection with sky
plane

(sin
a
2
< sin q0 cosf0)

vp ¼ v cos d ¼ v
A cos a

2
� C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ C2 � cos2 a

2

p
A2 þ C2

�����

����� y 2 0; 2p½ �

Intersection with sky
plane

(sin
a
2
� sin q0 cos f0)

vp ¼ v cos d ¼ v
A cos a

2
� C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ C2 � cos2 a

2

p
A2 þ C2

�����

����� y 62 y1;y2½ �

vp ¼ v y 2 y1;y2½ �:

8><
>:

Non-disk-center-covered
CMEs

(cos
a
2
> sin q0 cos f0)

No intersection with sky
plane

(sin
a
2
< sin q0 cos f0)

vp ¼ v cos d ¼ v
A cos a

2
� C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ C2 � cos2 a

2

p
A2 þ C2

�����

����� y 2 yL;yR½ �

Intersection with sky
plane

(sin
a
2
� sin q0 cos f0)

vp ¼ v cos d ¼ v
A cos a

2
� C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ C2 � cos2 a

2

p
A2 þ C2

�����

����� y 2 yL;yR½ � \ y1;y2½ �

vp ¼ v y 2 y1;y2½ �:

8><
>:
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the ice-cream cone on the sky plane changing as the orienta-
tion, angle width, and the radial distance change [see Zhao et
al., 2002, Figures 1 and 2].
[17] If the ice-cream cone intersects with the sky plane

OYhZh, the speed of the projection in the intersectant region
will be equal to the radial speed of CME in the intersectant
region. Assuming that the intersectant area isy1
y
y2, let
sin d = 0 in equation (6), one can get the following equation

cosy1;2 sinf0 sin q0 þ siny1;2 cos q0 ¼ cos
a
2

sin
a
2
� sin q0 cosf0

8><
>:

ð10Þ

[18] Now we can establish the relationship between the
projected speed vp in the sky plane and bulk speed v,
according to the above discussion. The projections of the
CMEs on the sky plane can be divided into four possible
cases, the disk-center-covered CMEs with or without sky-

plane intersection and the non-disk-center-covered CMEs
with or without sky-plane intersection, as shown in Table 1.
Note that C = sin q0 cos f0 for all the cases discussed.
[19] The other necessary parameters g (the angle between

the axis of the cone and the sky plane) can be obtained from
the following equation:

sin g ¼ sin q0 cosf0: ð11Þ

The position angle (PA) defined counter clockwise in
degrees from solar north in the LASCO imaging plane
can be obtained from equation (8).

3. Parameter Determination of the
Ice-Cream Cone Model

3.1. Application of the Ice-Cream Cone Model to a
Full Halo CME on 4 April 2000

[20] From the equations in Table 1, there are four param-
eters needed to be determined, namely, the radial speed of

Figure 2. The SOHO/EIT observation of the event on 4 April 2000, and there was a C9.7 flare in active
region 8933 marked by the circle associated with the CME at N19W56 begun at 1512 UT.
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the CME (v), the angular width of the CME (a), and the
location of the CME (q0, f0). In following part, we will
illuminate how to determine these parameters of a full halo
CME using a case observed on 4 April 2000 (the same case
as used by Xie et al. [2004]).

[21] To determine these parameters mentioned above,
three steps are considered: (1) Restricting the possible
source region from the SOHO/EIT observations; (2) Mea-
suring the height-time relations to obtain the projected
speeds on different azimuthal angles; (3) In the possible
source region estimated in step 1, using the least-squares fit
method to decide the best fit parameters.
[22] First, the erupted point (q0, f0) the CME is

restricted to a relatively small region based on the
SOHO/EIT observations. Figure 2 shows the SOHO/EIT
observation of the event on 4 April 2000. There was a
C9.7 flare in active region 8933 marked by the circle
associated with the CME at N19W56 begun at 1512 UT.
Owing to the fact that CME-associated flares or active
regions are often located near one leg of CMEs, rather
than near the center [Harrison, 1986; Plunkett et al.,
2001], we can confine the location of the apex of the ice-
cream cone (q0, f0) to a relatively reasonable region from
the EIT observation. In this case, we confined q0 and f0

in a 36� � 36� region centered on the point N19W56.
That is, the region encircled by the heliacal latitude [N01,
N37] and the heliacal longitude [W38, W74].
[23] Second, measuring the projected speeds of the CME

in different directions via the height-time relations. Using
the Solar Software SSW (http://www.lmsal.com/solarsoft/),
we can get a series of the running different images of the
LASCO C2 and C3 observations. Figure 3 shows a running
different image of LASCO/C3 at 1718 UT of the event 4
April 2000. We establish some radials emitted from one
origin point to label the azimuthal angles (i.e., the angle y in
Table 1) on the sky plane, on which the height-time
relations will be obtained. To ensure that the azimuthal
angles of different images are the same, the centers of
LASCO planes in different images are all located on this
origin point (see Figure 3).
[24] We mark the front edges of the CME on different

azimuthal angles at a given time (see the points marked
in the sketch Figure 3). Through recording the propaga-
tions of the marked points at different time, one can get

Figure 3. The running different image of the propagation
of the CME (1718–1643 UT) on 4 April 2000. The radial
lines show the given directions and the solid squares show
the measured front edge of the CME.

Table 2. Measured Projection Speeds of the CME on 4 April 2000

in Different Directions

Angle, deg Speed, km/s

12.6� 1074.6
25.7� 1114.3
36.3� 1242.4
43.9� 1109.1
55.3� 1125.2
67.3� 1103.2
78.6� 1101.2
91.2� 993.3
99.7� 977.3
115.2� 828.0
133.0� 754.3
152.2� 687.9
167.2� 612.4
183.8� 514.3
201.2� 508.2
215.9� 506.0
238.6� 545.9
254.6� 593.5
270.2� 687.9
282.0� 788.9
294.2� 923.6
307.4� 994.1
319.3� 1091.7
330.3� 1130.9
343.3� 1162.6
357.8� 1124.2

Figure 4. The distribution of the projection speed on the
azimuthal angle y in the sky plane for the 4 April 2000
CME. The triangles show the measured data. The solid
curve is the fitting result using the ice-cream cone model,
and the dashed curve is obtained from Xie et al.’s work.
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the height-time relations on every labelled azimuthal
angle. The observed projected speeds (vp,obs) of the
CME on this azimuthal angle can be obtained by linear
fitting the height-time relations. Table 2 shows the linear
fitting vp,obs versus the azimuthal angles for the CME on
4 April 2000.
[25] Finally, the optimal parameters v, a, and proper

(q0, f0) can be determined by the least-squares fit of the
calculated projected speeds (vp,cal) (obtained from the
equations in Table 1) with the measured projection
speeds (vp,obs) on different azimuthal angles. For the
case on 4 April 2000, we obtain v = 1114.75 km/s,
a = 135.15�, q0 = 74�, f0 = 40�, g = 47.4�, and PA =

294.0� with a least-squares deviation sv = 77.2 km/s.
At the same time, it has been found that this full halo
CME had an intersection with the sky plane in the range of
y 2 [328.4�,79.7�]. Figure 4 shows the plot of the calcu-
lated projected speeds using the above optimal param-
eters versus the measured projection speeds. The
triangles indicate the measured speeds. The solid line
is the curve of the calculated projection speeds on the
sky plane. The beelines at the both sides of the curve
indicate that the ice-cream cone has intersected with the
sky plane at the azimuths in the region [328.4�,79.7�]
and the projected speeds should reflect the real radial
speed of the CME.

Figure 5. Comparison of the modeled halos (white circles) and the LASCO difference images from the
4 April 2000 CME. The intersection region of the model with the sky plane is denoted by the crosses.
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[26] Having these geometrical parameters of the ice-
cream cone, we can reproduce the propagation of the
CME with time from the height-time relation. For exam-
ple, we can obtain the real radial distance r of the ice-
cream cone shell at time 1643 UT by fitting the projected
distances (that are recorded by the squares in Figure 3) at
that time using the parameters of a, q0, and f0. Then, the
reproduced cross section of the ice-cream cone on the sky
plane can be plotted (see the white circle on the first
picture of Figure 5). On the basis of the r at 1643 UT,
one can easy decide the following cross section of the
ice-cream cone on the sky plane versus time series.
Figure 5 shows the projection of the modeled full halo
CME (white circles) propagated with time, which are
superposed on the running different images observed by
LASCO/C3, and the intersected region are denoted by the
crosses.
[27] This event has also been discussed by Michalek

and Gopalswamy [2003] and Xie et al. [2004]. In work
by Michalek and Gopalswamy, the width, speed, and
source location of the halo CME were obtained by
measuring the sky-plane speeds of the first appearance
of the halo CME above opposite limbs on LASCO
observations. Xie et al. used an ellipse in the sky plane
to fit the observations of LASCO and obtain the cone
parameters. Their results are also listed in Table 3. A
discussion and a comparison on the results obtained
from these three models will be given in the following
section.

3.2. Application of the Ice-Cream Cone Model to a
Broadside CME on 26 October 2003

[28] There is a little difference between application of
the ice-cream cone model to a disk-center-covered CME
and to a non-disk-center-covered CME. From the LASCO
observations, the projected angular width (PAW) (yL 

y 
 yR) on sky plane can be measured so that the
azimuthal angle y0 of the projected ice-cream-cone axis
and the half-width of the projected angle of a CME (y±)
can be easily determined from observations. Comparing
these measured values with the calculated ones from
equations (8) and (9), we can constrain the selects of q0,
f0 and a in step 3.
[29] For a non-disk-center-covered CME on 26 October

2003, we got the observational y0 = 5.0� and y± = ±78.96�.
Thus the geometrical parameters are q0 = 86�, f0 = 57�, a =
110�, and the kinematic parameter of this CME is v =
1589.0 km/s. Comparing with the observational erupted
location N05W43 (determined from the EIT observation),
one can find that the location parameters q = 86� and f =
57�, that is, N04W57, obtained from this method, are
reasonable on a certain extent.
[30] The distribution of the projection speeds are

shown in Figure 6, where the solid curve shows the

least-squares fitting result and the triangles show the
measured data. This CME also had an intersection
with the sky plane in the range of y 2 [319.1�,
52.9�]. The angle between the axis of the ice-cream
cone and the sky plane g is equal to 32.9�. Figure 7
shows the modeled non-disk-center-covered CME (white
circles) propagated with time versus the real running
different images observed by LASCO C3 from the 26
October 2003 event.

4. Summary and Discussion

[31] We have fitted 40 frontside halo CMEs (with
observational PAW larger than 120�) during 2000–2002
using the ice-cream cone model. The list of these events
is shown in Table 4, in which we select all the events
from 2000–2002 in the work of Wang et al. [2004,
Table 1] (in their work, they use samples listed by Cane
and Richardson [2003] and exclude the ambiguous
events and the events resulted from multiple CMEs
marked with ‘‘i’’ and ‘‘j’’ in Cane and Richardson’s
work to make the facts more clear). In Table 4, columns
1–5 give the observational date, time, location, the
linear fit speed, and the average transit speed of the
CME, respectively. Columns 6–9 give the calculated
parameters of the ice-cream cone mode. The last column
shows the type of CME defined by the predicted
observation angle width (POAW) of the CME in the view
field of LASCO/C3 using the ice-cream cone model,
namely, the full halo CME (POAW = 360�), the disk-
center-covered partial halo CME (180� < POAW < 360�),
and the non-disk-center-covered CME (POAW < 180�).
Please note that full halo CME and the disk-center-covered

Figure 6. The distribution of the projection speed on the
azimuthal angle y in the sky plane for the 28 October 2003
CME. The triangles show the measured data. The solid
curve is the fitting result using the ice-cream cone model.

Table 3. Comparison of the Cone Parameters for the CME on 4 April 2000 Derived From Three Methods

V, km/s a q0 f0 g PA

Ours 1114.75 135.15� 74� 40� 47.4� 294.0�
Xie et al. 1139.1 128.6� 64.3� 27.7� 53.3� 316.1�
Michalek et al. 1645 151� – – 37� 304�
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Table 4. List of the Geometrical and Kinematic Parameters of the Frontside CMEs (>120�) Obtained Through Ice-Cream Cone Model

During 2000–2002a

CMEs Ice-Cream Cone

Date Time Location
Vf

b

km s�1
Vf

c

km s�1 V, km/s a, deg Location Intersection, deg Chard

2000
01/18* 1754 S16E04 739 438.6 756.0 148.8 S09E15 (184.9,247.9) F
02/08 0930 N27E15 1079 530.8 879.0 130.6 N16E15 0 F
02/10 0230 N25E02 944 724.6 920.0 95.0 N16W07 0 F
02/17 2006 S23W15 600 508.1 797.0 99.9 S05W08 0 F
04/04 1632 N19W54 1188 666.7 1114.8 135.2 N16W40 (328.4,79.7) F
05/10e 2006 S26W10 641 603.9 - - - - -
05/20* 1450 S37W45 348 621.9 417.8 116.0 S40W54 (259.2, 6.7) N
07/07* 1026 N23W41 453 476.2 560.5 179.1 N21W30 (308.3,126.8) F
07/11 1327 N18E36 1078 850 1104.5 100.1 N08E26 0 F
07/14* 1054 N17W02 1674 1302.1 1115.0 179.9 N11W13 (310.9,130.7) F
07/23* 0530 N05E20 613 450.5 551.0 157.5 S04E30 (120.8,255,2) P
08/09 1630 N20E12 702 688.7 745.7 108.3 N13E08 0 F
09/05 0554 N22E10 473 496.0 785.8 68.0 N37E07 0 N
10/02 2026 S10W01 525 646.0 930.3 66.6 S06W09 0 F
10/09 2350 N02W06 798 520.8 2170.5 36.8 N05W04 0 F
10/25 0826 N20W66(?) 770 493.1 950.8 117.2 N11W26 0 F
11/08* 2306 N09W75 1345 1190.5 1750.3 169.5 N06W50 (284.6,90.9) F

2001
02/28 1450 S17W05 313 490.2 540.7 111.1 S05E05 0 P
03/16* 0350 S08W09 271 490.2 551.0 164.8 S14W17 (250.3,287) P
03/29* 1026 N15W12 942 636.1 848.3 179.8 N25W14 (332.7,152.4) F
04/10 0530 S23W09 2411 1028.8 2765.0 54.5 S06W07 0 F
04/11 1331 S22W27 1103 957.9 1268.5 103.1 S19W15 0 F
04/26 1230 N23W02 1006 841.8 950.8 127.1 N22W00 0 F
08/14f 1601 N37E17 618 548.2 - - - - -
09/28 0854 N12E18 846 586.9 1176.3 86.6 S09E05 0 F
09/29* 1154 N14E02 509 578.7 674.0 87.4 N07E10 0 P
10/09 1130 S30E10 973 666.7 950.8 115.0 S23E01 0 F
10/19 1650 N16W30 901 757.6 786.8 144.2 N25W24 (349.4,108.7) F
10/22e 1826 S18E18 618 410.2 - - - - -
10/25 1526 S18W20 1092 406.5 899.5 122.7 S12W14 0 F
11/04 1635 N06W18 1810 793.7 1719.5 143.9 N11W22 (345.8,69.1) F
11/22 2330 S17W35 1437 1082.3 2519.0 60.8 N03W11 0 F

2002
02/12 1506 N12E38 448 621.9 479.5 75.0 N19E44 0 N
03/15 2306 S07W08 907 534.2 879.0 148.0 S00W17 (340.5,19.5) F
04/17 0826 S13W12 1218 656.2 1104.5 108.8 S05W24 0 F
05/22* 0326 S15W70 1494 1028.8 1125.0 169.1 S24W50 (246.6,53.1) F
07/29 1145 S12W16 556 473.5 643.3 109.8 S12W16 0 F
08/16 1230 S10E19 1459 582.8 1401.7 97.9 S15E10 0 F
09/05 1654 N12E27 1657 706.2 2990.5 40.6 S05E15 0 F
09/17 0754 S10W33 960 694.4 1063.5 68.0 S15W29 0 N

aAsterisks denote the cases that are not very well fitted.
bThe linear fit speed of the CME published in CMElist website http://cdaw.gsfc.nasa.gov/CME_list/.
cThe average transit speed of the CME in the interplanetary medium [Wang et al., 2004].
dThe type of the CMEs predicted from the ice-cream cone model. F is full halo CME (POAW = 360�), P is disk-center-covered partial halo CME (360� <

POAW 
 180�), and N is non-disk-center-covered CME (POAW < 180�).
eThe LASCO observations are ambiguous due to the successive CMEs.
fDenotes bad LASCO data.
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Figure 7. Comparison of the modeled halos (white circles) and the LASCO difference images for the
28 October 2003 CME. The intersection region of the model with the sky plane is denoted by the
crosses.
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partial halo CME here have no distinction in the
process of the ice-cream model. They are different only
on the LASCO observations because the partial CME
just does not develop to a full halo in the view field of
LASCO observation, due to the orientation, angle width,
and the radial distance of the ice-cream cone [Zhao et
al., 2002].
[32] The cases of ambiguous LASCO observations due

to successive CMEs erupted or bad LASCO observational
data cannot be measured and are marked with e and f,
respectively, in Table 4. The cases whose fitting projected
speeds curves do not match the measured observational
projected speeds data well are marked with stars in Table 4.
The possible causes of these unmatched cases are described as
following: Some cases, i.e., the CMEs on 14 July 2000
and 29 March 2001, whose angular widths are near 180�,
are due to the very symmetrical LASCO observations and
with relatively deflected locations from the center of the
Sun; some cases have no relatively regular projected
contours, i.e., the CMEs on 7 July 2000 and 16 March
2001 or have no very clear observational pictures, i.e.,
8 November 2000. The histograms of the speed distribu-
tion and the angular width distribution are shown in
Figures 8 and 9. The average speed of the CME is
1104 km/s. The average width of the CME is approxi-
mately equal to 114� (with the most narrow CME width
of 36.8� and the widest one of 179�).
[33] In summary, we use an ice-cream cone model to

determine the geometrical and kinematical properties of
halo CMEs as well as nonhalo CMEs. Comparing with
the previous cone model in the literature, there are some
new characteristics in this model.
[34] First, the height-time relationship and the coordinate

system transformation are used in this model. From the
measurements of height-time relations in different azimuthal
angles, one can get the nearly actual distributions of sky-
plane observational speeds. It can avoid the ambiguities in
finding the point which appears as the first above the
occulting disk (that was used in the work of Michalek and
Gopalswamy [2003]). Moreover, it also give us a way to test

whether the parameters of a CME get from the model match
the observation well.
[35] Second, this method uses the SOHO/EIT observa-

tions to restrict the source locations to a relative small
region. It will reduce calculating time and give relatively
accurate locations near the active regions. For example,
in the case of 4 April 2000, the fitted location is (q0,
f0) = (74�, 40�) (that is, N16W40). This location is near
to the center the flare active region N19W56, while Xie
et al.’s result (q0, f0) = (64.3�, 27.7�) (that is, N26W28)
departs more from the flare region. From the Figure 4,
one can also find this departure from the observation
data.
[36] Third, we also use the ice-cream cone model to fit a

nonhalo CME. Halo CMEs and nonhalo CMEs have no
essential differences in their geometrical and kinematical
properties. The basic methods are the same only with some
identifications of observational measurements, namely,
identification of the borders of yL, yR in equations in
Table 1 from the LASCO observations. Similar work has
also been done by Liu et al. [2002] using the method
developed by Zhao et al. [2002].
[37] Finally, the ice-cream cone model is different from

previous cone models in the intersectional region between
the cone and the sky plane. In this region, the projection
is determined by the top coronal of the ice-cream cone.
For the event of 4 April 2000, the least-squares devia-
tions calculated by the ice-cream cone model and the
cone model are 77.2 km/s and 83.3 km/s, respectively.
The difference is not very clear, which is due to the small
intersected angle IA = a/2 � g � 20� and cos IA � 0.94.
For the event of 26 October 2003, the least-squares
deviations obtained from the ice-cream cone model and
the cone model are 66.5 km/s and 132.8 km/s, respec-
tively. Figure 10 shows the projected speed profiles for a
given CME with fixed parameters of V = 1000 km/s, a =
120�, q = 90�, and the longitude f changing from 50� to
80�. One can find that out of the intersectional region the
ice-cream cone model and the cone model give the same

Figure 8. The histogram showing the distribution of V for
the halo CMEs listed in Table 4.

Figure 9. The histogram showing the distribution of a for
the halo CMEs listed in Table 4.
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results, but in intersectional region, they give very dif-
ferent results.
[38] Most of the slow CMEs (V < 250 km/s) show

acceleration while most of the fast CMEs (V > 900 km/s)
show deceleration [Gopalswamy et al., 2000; Yashiro et
al., 2004]. We have examined the height-time curve in
different azimuths for each case listed in Table 4. In most
cases, we found that the height-time plots show nearly
linear relations in their measured azimuths with small
accelerations (or decelerations). However, the accumulated
effect of the small acceleration (or deceleration) will
change the initial and final speed of the CME due to
the large view field of LASCO. Thus the assumption of
constant speed will be not suitable for some cases. This is
one of the major error sources of this work. The other
error source may be that for simplicity, the apex of the
ice-cream cone is located in the center of the Sun, not at
the solar surface as done by Michalek and Gopalswamy
[2003]. In general, the method in this paper works well
for the fast CMEs whose front edges are clear in the
running different images. If the CME has relatively
complex projected shape or the running different images
are too faint, the result will be unstable.
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