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ABSTRACT

Context. The Helios measurements of the angular momentum flux L of the fast solar wind lead to a tendency for the fluxes associated
with individual ion angular momenta of protons and alpha particles, Lp and Lα, to be negative (i.e., in the sense of counter-rotation
with the Sun). However, the opposite holds for the slow wind, and the overall particle contribution LP = Lp + Lα tends to exceed the
magnetic contribution LM. These two aspects are at variance with previous models.
Aims. We examine whether introducing realistic ion temperature anisotropies can resolve this discrepancy.
Methods. From a general set of multifluid transport equations with gyrotropic species pressure tensors, we derive the equations
governing both the meridional and azimuthal dynamics of outflows from magnetized, rotating stars. The equations are not restricted
to radial flows in the equatorial plane but valid for general axisymmetric winds that include two major ion species. The azimuthal
dynamics are examined in detail, using the empirical meridional flow profiles for the solar wind, constructed mainly according to
measurements made in situ.
Results. The angular momentum flux L is determined by the requirement that the solution to the total angular momentum conservation
law is unique and smooth in the vicinity of the Alfvén point, defined as where the combined Alfvénic Mach number MT = 1. MT has
to consider the contributions from both protons and alpha particles. Introducing realistic ion temperature anisotropies may introduce
a change of up to 10% in L and up to ∼1.8 km s−1 in azimuthal speeds of individual ions between 0.3 and 1 AU, compared with the
isotropic case. The latter has strong consequences on the relative importance of LP and LM in the angular momentum budget.
Conclusions. However, introducing ion temperature anisotropies cannot resolve the discrepancy between in situ measurements and
model computations. For the fast-wind solutions, while in extreme cases LP may become negative, Lp never does. On the other hand,
for the slow solar wind solutions examined, LP never exceeds LM, even though LM may be less than the individual ion contribution,
since Lp and Lα always have opposite signs for the slow and fast wind alike.
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1. Introduction

The angular momentum loss of a rotating star due to its out-
flow influences the rotational evolution of the star considerably,
and is therefore of astrophysical significance in general (see e.g.,
Weber & Davis 1967; Belcher & MacGregor 1976; Mestel &
Spruit 1987; Bouvier et al. 1997). However, direct tests of in situ
measurements against theories such as those presented by Weber
& Davis (1967) are only possible for the present Sun. A substan-
tial number of studies have been conducted and were compiled
in the comprehensive paper by Pizzo et al. (1983), who them-
selves paid special attention to the Helios measurements of spe-
cific angular momentum fluxes. The measurements, further ana-
lyzed by Marsch & Richter (1984), are unique in that they allow
the individual ion contribution from protons Lp and alpha parti-
cles Lα to the solar angular-momentum loss rate per steradian L
to be examined. For instance, despite the significant scatter, the
data exhibit a distinct trend for Lp to be positive (negative) for
solar winds with proton speeds vp below (above) 400 km s−1.
A similar trend for Lα is also found on average. The magnetic
contribution LM, on the other hand, is remarkably constant. A
mean value of LM = 1.6 × 1029 dyne cm sr−1 can be quoted
for the solar winds of all flow speeds and throughout the region
from 0.3 to 1 AU. For comparison, the mean values of angular
momentum fluxes carried by ion flows in the slow solar wind

are Lp = 19.6 and Lα = 1.3 × 1029 dyne cm sr−1 (see Table II
of Pizzo et al. 1983). The overall particle contribution to L is
then LP = Lp + Lα = 20.9 × 1029 dyne cm sr−1, which tends
to be larger than LM. It is noteworthy that a more recent study
by Scherer et al. (2001) showed how examining the long-term
variation of the non-radial components of the solar wind veloc-
ity and the corresponding angular momentum fluxes can help us
understand the heliospheric magnetic field better.

Alpha particles should be placed on the same footing as pro-
tons from the perspective of solar wind modeling, given their
non-negligible abundance and the fact that there tends to exist
a substantial differential speed vαp ≡ |uαp|sign(|uα| − |up|). As
shown by the Helios measurements, a vαp amounting to up to
20−30% of the local proton speed may occur in both the fast
and slow solar winds (Marsch et al. 1982a,b), with the latter be-
ing exemplified by an event that took place on day 117 of 1978,
when a positive vαp ∼ 100 km s−1 was found at 0.3 AU (Marsch
et al. 1981). That on the average vαp ≈ 0 in the slow wind sim-
ply reflects that the events with positive and negative vαp occur
with nearly equal frequency (Marsch et al. 1982a). As for the
alpha abundance relative to protons, a value of 4.6% (0.4−10%)
is well-established for the fast (slow) solar wind (e.g., McComas
et al. 2000). Therefore alpha particles can play an important role
as far as the energy and linear momentum balance of the solar
wind are concerned. When it comes to the problem of angular
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momentum transport, it was shown that in interplanetary space
not only the angular momentum flux carried by the alpha parti-
cles Lα but also that convected by the protons Lp are determined
by the terms associated with vαp (Li & Li 2006). This essentially
derives from the requirement that the proton-alpha velocity dif-
ference vector be aligned with the instantaneous magnetic field.
As a consequence, these terms have no contribution to the over-
all angular momentum flux convected by the ion flow LP, which
turns out to be smaller than LM in all the models examined in the
parameter study by Li et al. (2007). This, together with the fact
that Lp is always positive (i.e., in the sense of corotation with the
Sun), is at variance with the Helios measurements.

A possible means to reconcile the measurements and the
model computation is to incorporate the species temperature
anisotropies. This is because the total pressure tensor P =

∑
s ps

summed over all species s participates in the problem of angular
momentum transport via the component PΔ = P‖ − P⊥ where ‖
and ⊥ are relative to the magnetic field B (see e.g., Weber 1970,
hereafter referred to as W70). While the overall loss rate per
steradian L may not be significantly altered, the azimuthal speed
of the solar wind and therefore the particle part of L may be when
compared with the isotropic case. Note that in the treatment of
W70 the solar wind was seen as a bulk flow and the ion species
are not distinguished. On the other hand, the formulation by Li
& Li (2006) did not take into account the pressure anisotropy,
which is a salient feature of the velocity distribution functions
for both protons and alpha particles as revealed by the Helios
measurements (Marsch et al. 1982a,b). It therefore remains to
be seen how introducing the pressure anisotropy influences in-
dividual ion azimuthal speeds. Moreover, the simple, prescribed
functional form for PΔ assumed in W70 needs to be updated in
light of the more recent particle measurements.

The aim of the present paper is to extend the W70 study in
three ways. First, we shall follow a multicomponent approach
and examine the angular momentum transport in a solar wind
comprising protons, alpha particles and electrons where a sub-
stantial proton-alpha particle velocity difference exists. Second,
although following W70 we use a prescribed form of PΔ for sim-
plicity, this prescription is based on the Helios measurements,
and also takes into account other in situ and remote sensing
measurements. Third, unlike W70 where the model equations
are restricted to the equatorial plane, the equation set we shall
derive is appropriate for a rather general axisymmetrical, time-
independent, multicomponent, thermally anisotropic flow ema-
nating from a magnetized rotating star. We note that a similar set
of equations, which was also restricted to radial flows, was de-
rived by Isenberg (1984) who worked in the corotating frame of
reference and neglected the azimuthal dynamics altogether. The
functional dependence on the radial distance and flow speed of
the magnetic spiral angle was prescribed instead. His approach
is certainly justifiable for the present Sun, but a self-consistent
treatment of the azimuthal dynamics is required when flows from
other stars are examined. This is because many stars either have a
stronger magnetic field or rotate substantially faster than the Sun.

The paper is organized as follows. We start with Sect. 2
where a description is given for the general multifluid, gy-
rotropic transport equations, based on which the azimuthal dy-
namics of the multicomponent solar wind is examined. Then
Sect. 3 describes the adopted meridional magnetic field and flow
profiles. The numerical solutions to the angular momentum con-
servation law are given in Sect. 4. In Sect. 5, we shall discuss
how examining the angular momentum transport in a multicom-
ponent solar wind can also shed some light on the spectra of
ion velocity fluctuations induced by Alfvénic activities. Finally,

Sect. 6 summarizes the results. The equations of and a discussion
on the poloidal dynamics are presented in the Appendix.

2. Mathematical formulation

Presented in this section is the mathematical development of
the equations that govern the angular momentum transport in
a time-independent solar wind which consists of electrons (e),
protons (p) and alpha particles (α). Each species s (s = e, p, α)
is characterized by its mass ms, electric charge es, number den-
sity ns, mass density ρs = nsms, velocity us, and partial pressure
tensor ps. If measured in units of the electron charge e, es may
be expressed by es = Zse with Ze ≡ −1 by definition.

To simplify the mathematical treatment, a number of as-
sumptions have been made and are collected as follows:

1. Symmetry about the magnetic axis is assumed, i.e., ∂/∂φ ≡ 0
in a heliocentric spherical coordinate system (r, θ, φ).

2. The velocity distribution function (VDF) of each species
is close to a bi-Maxwellian, and the pressure tensor is gy-
rotropic, i.e., ps = p⊥s I+ (p‖s− p⊥s )b̂b̂, where I is the unit dyad
and b̂ is the unit vector along the magnetic field B. The tem-
peratures pertaining to the degrees of freedom parallel and
perpendicular to B follow from the relation p‖,⊥s = nskBT ‖,⊥s ,
where kB is the Boltzmann constant.

3. Quasi-neutrality is assumed, i.e., ne =
∑

k Zknk.
4. Quasi-zero current is assumed, i.e., ue =

∑
k Zknkuk/ne (k =

p, α), except when the reduced meridional momentum equa-
tion is derived.

2.1. Multi-fluid equations

The equations appropriate for a multi-component solar wind
plasma with gyrotropic species pressure tensors may be found
by neglecting the electron inertia (me ≡ 0) in the equations given
by Barakat & Schunk (1982). Following the same procedure as
given in the Appendix A.1 in Li & Li (2006), one may find

∇ · (nkuk) = 0, (1)

uk · ∇uk + ∇ · pk

nkmk
+

Zk∇ · pe

nemk
+

GM	
r2

r̂

− 1
nkmk

[
δMk

δt
+

Zknk

ne

δMe

δt

]

− Zk

4πnemk
(∇ × B) × B +

Zke
mkc

n jZ j

ne

(
u j − uk

)
× B = 0, (2)

us · ∇p‖s + p‖s(∇ · us + 2∇‖ · us)

+∇ · q‖s −Qs
...∇(b̂b̂) − δE

‖
s

δt
= H‖s, (3)

us · ∇p⊥s + p⊥s (∇ · us + ∇⊥ · us)
+∇ · q⊥s +

1
2

Qs
...∇(b̂b̂) − δE

⊥
s

δt
= H⊥s , (4)

∇ × (ue × B) = 0, (5)

where the subscript s refers to all species (s = e, p, α), while
k stands for ion species only (k = p, α). The gravitational con-
stant is denoted by G, M	 is the mass of the Sun, and c is the
speed of light. The momentum and energy exchange rates due
to the Coulomb collisions of species s with the remaining ones
are denoted by δMs/δt and δE‖,⊥s /δt, respectively. The third-
rank tensor Qs, together with the heat flux vectors q‖,⊥s associ-
ated with parallel and perpendicular degrees of freedom, arises
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from the deviation of species VDFs from an exact bi-Maxwellian
(Barakat & Schunk 1982). Moreover, H‖,⊥s stands for the heating
rates applied to species s in the parallel and perpendicular di-
rections from some non-thermal processes. They may be deter-
mined by assuming that the heating derives from the dissipation
of Alfvén-ion cyclotron waves (e.g., Hollweg & Isenberg 2002),
or more simply in some ad hoc fashion such as employed in
Leer & Axford (1972). The operators ∇‖ and ∇⊥ are defined by
∇‖ = b̂b̂ · ∇ and ∇⊥ = ∇ − ∇‖, respectively.

In Eq. (2), the subscript j stands for the ion species other
than k, namely, j = p for k = α and vice versa. As can be seen,
in addition to the term (∇ × B) × B, the Lorentz force possesses
a new term in the form of the cross product of the ion velocity
difference and magnetic field. Physically, this new term repre-
sents the mutual gyration of one ion species about the other, the
axis of gyration being in the direction of the instantaneous mag-
netic field. Furthermore, Eq. (5) is the time-independent version
of the magnetic induction law, which states that the magnetic
field is frozen in the electron fluid. It may be readily shown that
the effects of the electron pressure gradient, the Hall term, and
the momentum exchange rates as contained in the generalized
Ohm’s law can be safely neglected given the large spatial scale
in question (a formal evaluation of the different terms can be
found in Sect. 2.1 of Li et al. 2006).

To proceed, we choose a flux tube coordinate system, in
which the base vectors are {êl, êN , êφ}, where

êl = BP/|BP|, êN = êφ × êl,

with the subscript P denoting the poloidal component.
Moreover, the independent variable l is the arclength along the
poloidal magnetic field line measured from its footpoint at the
Sun. This choice permits the decomposition of the magnetic field
and species velocities as follows,

B = Blêl + Bφêφ, us = vslêl + vsNêN + vsφêφ, (6)

where s = e, p, α. From the assumption of azimuthal symmetry,
and the assumption that the solar wind is time-independent, one
can see from the poloidal component of Eq. (5) that ueP should
be strictly in the direction of BP. In other words, veN = 0 to a
good approximation. Now let us consider the φ component of
the momentum Eq. (2). Since the frequencies associated with
the spatial dependence are well below the ion gyro-frequency
Ωk = (ZkeBl)/(mkc) (k = p, α), from an order-of-magnitude esti-
mate one can see that |v jN − vkN | 
 |vkφ|. Combined with the fact
that veN = 0, this leads to that both vpN and vαN should be very
small and can be safely neglected unless they appear alongside
the ion gyro-frequency. With this in mind, one can find from the
N component of Eq. (2) that

vαφ − vpφ = Bφ
Bl

(
vαl − vpl

)
. (7)

That is, the ion velocity difference is strictly aligned with the
magnetic field. This alignment condition further couples one ion
species to the other.

The fact that vsN (s = e, p, α) is negligible means that the sys-
tem of vector equations may be decomposed into a force balance
condition across the poloidal magnetic field and a set of trans-
port equations along it. In the present paper, however, we simply
replace the force balance condition by prescribing an analytical
meridional magnetic field configuration. Moreover, we examine
in detail only the azimuthal dynamics, leaving a brief discussion
on the poloidal one in the Appendix.

Fig. 1. Adopted meridional magnetic field configuration in the inner
corona. Here only a quadrant is shown in which the magnetic axis points
upward, and the thick contours labeled F and S delineate the lines of
force along which the fast and slow solar wind solutions are examined,
respectively. Also shown is how to define the geometrical factor R, and
the base vectors êl, êN and êφ of the flux tube coordinate system (see
Sect. 2).

2.2. Azimuthal dynamics

The φ component of the magnetic induction law (5) gives

∇ ·
[

1
R

(
BφueP − veφBP

)]
= 0. (8)

Now that ueP = velêl, one may readily integrate Eq. (8) along a
magnetic line of force to yield

veφ = AΩR +
Bφ
Bl
vel. (9)

Here R = r sin θ is a geometrical factor to be evaluated along
a given line of force (see Fig. 1), and AΩ is a constant of inte-
gration and should be identified as the angular rotation rate of
the footpoint of the magnetic flux tube. Taking into account the
alignment condition (7), one may find that

vsφ = AΩR +
Bφ
Bl
vsl (10)

where s = e, p, α. Therefore in a frame of reference that corotates
with the Sun, the velocities of all species are aligned with the
magnetic field.

Another equation that enters into the azimuthal dynamics is
the φ component of the total momentum. In the present case,
it reads

1
R

⎧⎪⎪⎨⎪⎪⎩
∑

k

ρkvkl

(
Rvkφ

)′ − Bl

4π

[(
1 − 4πPΔ

B2

)
RBφ

]′⎫⎪⎪⎬⎪⎪⎭ = 0, (11)

where

PΔ = P‖ − P⊥, P‖,⊥ =
∑

s

p‖,⊥s , (12)

and the prime ′ = êl · ∇ is the directional derivative along the
poloidal magnetic field.
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For a time-independent flow ρkvkl/Bl = const. It then fol-
lows that

R

[
vpφ + ηvαφ − BlBφ

4πρpvpl

(
1 − 4πPΔ

B2

)]
= AL, (13)

where the constant η = (ραvαl)/(ρpvpl) is the ion mass flux ratio,
and AL is a constant of integration. Physically, AL is related to
the angular momentum loss rate per steradian L by

L = ṀpAL, (14)

where

Ṁk = ρkvkl
BlE

Bl
r2

E, (k = p, α) (15)

is the ion mass loss rate per steradian scaled to the Earth orbit
rE = 1 AU, with BlE denoting the strength of the poloidal mag-
netic field at rE. It follows that the angular momentum loss rate
of the Sun due to the solar wind L̇ = 4πL if L is independent
of colatitude. Equation (13) shows that L consists of the contri-
butions due to individual ion angular momenta Lk, the magnetic
stresses LM and the total pressure anisotropy Lani, where

[Lk, LM, Lani] = R

(
BlE

Bl
r2

E

) [
ρkvklvkφ,

−BlBφ
4π
,

BlBφPΔ

B2

]
(16)

with k = p, α.
Substituting Eqs. (10) into (13), one may find

tanΦ
[
M2

T −
(
1 − βΔ cos2Φ

)]
= ε

[
AL

(1 + η)AΩR2
− 1

]
, (17)

where tanΦ = Bφ/Bl defines the magnetic azimuthal an-
gle Φ, and

M2
T = M2

p + M2
α,M

2
k =

4πρkv
2
kl

B2
l

(k = p, α),

βΔ =
4πPΔ

B2
l

, ε = (1 + η)M2
p

AΩR
vpl
· (18)

By definition, MT is the combined poloidal Alfvénic Mach num-
ber, which involves both ion species. For a typical solar wind,
between 1 R	 and 1 AU there exists a point where MT = 1,
which is to be called the Alfvén point and denoted by ra.

As discussed in detail by Li & Li (2006), when species tem-
perature anisotropy is absent (PΔ = 0 and therefore βΔ = 0), for
Eq. (17) to possess a solution that passes smoothly through ra
the two constants AL and AΩ have to be related by

AL = (1 + η)AΩR2
a , (19)

where the subscript a denotes quantities evaluated at the Alfvén
point. When βΔ is not zero, a direct relation between AL and AΩ
is not as obvious since now Eq. (17) becomes cubic in tanΦ.
Nevertheless, one may write AL as AL = λAL0, where AL0 is
determined through Eq. (19) and therefore λ stands for the cor-
rection due to a finite βΔ. It then follows that

c3 tan3Φ + c2 tan2Φ + c1 tanΦ + c2 = 0, (20)

where

c3 = M2
T − 1, c2 = ε

[
1 − λ

(Ra

R

)2]
,

c1 = M2
T − 1 + βΔ. (21)

Given the meridional flow profiles along a prescribed magnetic
field line, Eq. (20) possesses only one real root at locations far
away from ra. However, in the vicinity of ra, there exists in gen-
eral three real roots and they diverge near ra. The requirement
that there exists a unique solution that is smooth from 1 R	 out
to 1 AU determines λ (Weber & Davis 1970; Weber 1970).

3. Meridional magnetic field and flow profiles

In principle, one needs to solve Eqs. (A.1) to (A.4) together with
Eq. (17) simultaneously to gain a a quantitative insight. In the
present paper, we refrain from doing so because from previ-
ous experience it proves difficult to yield the flow profiles that
satisfactorily reproduce in situ measurements such as made by
Helios. Take the proton-alpha speed difference vαp in the fast so-
lar wind for example. It is observationally established that vαp
closely tracks the local Alfvén speed in the heliocentric range
r > 0.3 AU (Marsch et al. 1982a). So far this fact still poses
a theoretical challenge: adjusting the ad hoc heating parame-
ters, or fine-tuning the cyclotron resonance mechanism is unable
to produce such a behavior (see, e.g. Hu & Habbal 1999). We
therefore adopt an alternative approach by prescribing the back-
ground meridional flow profiles that mimic the observations and
then examining what consequences the species anisotropies have
on the azimuthal dynamics.

3.1. Background meridional magnetic field

For the meridional magnetic field, we adopt an analytical model
given by Banaszkiewicz et al. (1998). In the present implementa-
tion, the model magnetic field consists of the dipole and current-
sheet components only. A set of parameters M = 2.2265, Q = 0,
K = 0.9343 and a1 = 1.5 are chosen such that the last open mag-
netic field line is anchored at heliocentric colatitude θ = 50◦ on
the Sun, while at the Earth orbit, the meridional magnetic field
strength Bl is 3γ and independent of colatitude θ, consistent with
Ulysses measurements (Smith & Balogh 1995).

The background magnetic field configuration is depicted
in Fig. 1, where the thick contours labeled F and S repre-
sent the lines of force along which we examine the fast and
slow solar wind solutions, respectively. Tube F (S ), which in-
tersects the Earth orbit at 70◦ (89◦) colatitude, originates from
θ = 38.5◦ (49.4◦) at the Sun where the meridional magnetic field
strength Bl is 3.93 (3.49) G.

3.2. Prescribed meridional flow profiles

The background meridional flow parameters are found by adopt-
ing a three-step approach described as follows:

1. Using some ad hoc heating parameters, we solve along flux
tube F (S ) the isotropic version of Eqs. (A.1) to (A.4) (see
Eqs. (8) to (10) in Li & Li 2007, for details) to yield the
distribution between 1 R	 and 1 AU of the ion number den-
sities nk and meridional speeds vkl (k = p, α), as well as the
isotropic species temperatures Ts (s = e, p, α) for the fast
(slow) solar wind. Specifically, the heating rates are of the
same format as in Sect. 3.2 in Li & Li (2008). To generate
the fast and slow solar wind solutions, the parameters [FE
(in erg cm−2 s−1), ld (in R	), χ] are chosen to be [1.9, 2.2, 2.2]
and [1, 1.8, 3.7], respectively. By simply adjusting the heat-
ing parameters it proves difficult to produce a reasonable
Tp profile in that if Tp in the inner corona is close to ob-
servations then Tp at 1 AU is usually only a fraction of the
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typically measured values. Moreover, the derived speed dif-
ference vαp,l = vαl − vpl varies little between 0.3 and 1 AU,
in contrast to the Helios measurements. Therefore some ad-
ditional steps are employed to make the flow profiles more
realistic. Specifically, all the parameters except np and vpl are
required to undergo a smooth transition from the profiles for
the region r <∼ 0.3 AU derived so far to those specified in
next step for the outer region.

2. The desired profiles, given in Table 1, for vαp,l, Tp and Tα for
the region r >∼ 0.3 AU (denoted by subscript o) are based
on the in situ measurements to be detailed shortly. Once vαp,l
is known, the meridional alpha speed vαl is given by vpl +
vαp,l, and the alpha density nα by (nα)I(vαl)I/vαl, where the
subscript I denotes the values obtained in the first step. The
distributions of nk, vkl (k = p, α) and Ts (s = e, p, α) thus
constructed are for the isotropic model.

3. Now the ion temperatures T ‖,⊥k can be constructed by pre-

scribing the temperature anisotropy Γk = T ‖k/T
⊥
k (k = p, α).

Note that the electron temperature is assumed to be isotropic.
For the region within several solar radii, Γk is required to
decrease with r from 1 at 1 R	, where the Coulomb self-
collisions are still frequent enough to suppress a temperature
anisotropy, to some value less than unity. This inner profile
is not directly constrained by observations but constructed
by noting that the processes operational in the inner corona
tend to heat the ions preferentially in the perpendicular direc-
tion (e.g., Hollweg & Isenberg 2002). On the other hand, for
r >∼ 0.3 AU, Γk follows a power law dependence on r with
the exponent determined by the Helios measurements (see
Table 1). Specifying the temperature anisotropies of protons
and alpha particles at 1 AU, ΓpE and ΓαE, determines Γk in the
outer region. The inner and outer profiles are then connected
smoothly to yield the desired Γk. The temperatures T ‖,⊥k fol-

low from the relations T⊥k = 3Tk/(2 + Γk) and T ‖k = ΓkT⊥k .

A detailed description of Table 1 is necessary. Note that through-
out this table x = r/rE where rE = 1 AU. Let us first focus on the
adopted values for the fast solar wind. For the isotropic proton
and alpha temperatures at 1 AU, we adopted the typical values
of Tp = 2.8 × 105 K and Tα = 5Tp (see e.g., Schwenn 1990;
McComas et al. 2000, hereafter Sch90 and Mc00). Furthermore,
Figs. 18 and 19 in Marsch et al. (1982b, hereafter M82b) in-
dicate that T ‖p ∝ x−0.75, and T⊥p ∝ x−1.08. A power law depen-
dence for Tp of Tp ∝ x−1 is therefore consistent with such a be-
havior, and also consistent with the Ulysses measurements (see
Table 2 in Mc00). Furthermore, Fig. 5 in Marsch et al. (1982a,
hereafter M82a) indicates that T ‖α ∝ x−1.15, and T⊥α ∝ x−1.38. A
profile of Tα ∝ x−1.3 is consistent with this behavior, but differs
substantially from that measured by Ulysses, which yields that
Tα ∝ x−0.8 (see Table 2 in Mc00). Moving on to the slow solar
wind, we note that values of Tp = 5.5 × 104 K and Tα = 1.7 ×
105 K are typically found at 1 AU (see e.g., Sch90). In addi-
tion, Figs. 18 and 19 in M82b indicate that T ‖p ∝ x−1.03, and
T⊥p ∝ x−0.9. Therefore we adopted a Tp profile of Tp ∝ x−0.94.
On the other hand, we adopted a profile for Tα in the form Tα ∝
x−0.96, which is consistent with the measured alpha temperature
anisotropies which indicate that T ‖α ∝ x−0.83, and T⊥α ∝ x−1.02

(see Fig. 5 in M82a).
In this study ΓpE and ΓαE will serve as free parameters. The

Helios measurements indicate that ΓpE ≈ 1.2 ± 0.3 and ΓαE ≈
1.3 ± 0.6 for the fast solar wind with vpl >∼ 600 km s−1, while
ΓpE ≈ 1.7 ± 0.7 and ΓαE ≈ 1.4 ± 0.6 for the slow solar wind with

vpl <∼ 400 km s−1 (Marsch et al. 1982a,b). Theoretically, one may
expect that the [ΓpE, ΓαE] pair may not occupy the whole rectan-
gle bounded by the given values in the ΓpE−ΓαE space, since too
strong an anisotropy can drive the system unstable with respect
to a number of instabilities when the plasma β is comparable
to unity. Given that the lower limit of ΓpE or ΓαE is only slightly
lower than 1, the ion-cyclotron instability can be shown to be un-
likely to occur (see, e.g., Eq. (3) in Gary et al. 1994). However,
the firehose instability may be relevant since it happens when P‖
is sufficiently larger than P⊥ and β‖ = 8πP‖/B2 >∼ 1. Note that
the alpha particles with a non-negligible abundance drifting rel-
ative to protons may complicate the situation considerably given
that in addition to the firehose, electromagnetic ion/ion instabil-
ities may also be relevant and the occurrence of such instabil-
ities is not restricted to the cases where the parallel β is large
(Hellinger & Trávníček 2006). Nevertheless, we only compare
the modeled [Γp, Γα] with the non-resonant firehose criterion
such as found via the dispersion relation of Alfvén waves (see
Eq. (23) in Isenberg 1984). Specializing to an electron-proton-
alpha plasma, the dispersion relation dictates that instability oc-
curs when 1−P⊥/P‖ > 2(1−xpxα)/β‖ where xk = (ρk/ρ)(vαp/vA)
(k = p, α) with vA = B/

√
4πρ being the Alfvén speed deter-

mined by the bulk mass density ρ = ρp + ρα. Using this criterion
it is found that the modeled flow profiles are all stable with the
only exception being for the segment r >∼ 195 R	 in the fast wind
with the largest values of ΓpE and ΓαE.

Figure 2 gives the radial distributions between 1 R	 and 1 AU
of the flow parameters for the fast and slow solar wind in the left
and right panels, respectively. Figures 2a and c depict the merid-
ional ion speeds vpl and vαl, while the ion temperatures T ‖k (the
dotted curves), T⊥k (dashed) and Tk (solid) are given in Figs. 2b
and d (k = p, α). The values for the temperature anisotropy
adopted for the construction are Γp,E = 1.5 and Γα,E = 1.9 for
the fast wind, and Γp,E = 2.42 and Γα,E = 2 for the slow wind. In
Fig. 2b, the error bars represent the uncertainties of the UVCS
measurements for the proton effective temperature, made for a
polar coronal hole as reported by Kohl et al. (1998). Similar
measurements by Frazin et al. (2003) along the edges of an equa-
torial streamer are given in Fig. 2d. Moreover, the asterisks in
Figs. 2a and c mark the location of the Alfvén point as defined
by Eq. (18).

For the fast (slow) solar wind it is found that at 1 AU the
meridional proton speed vpl is 607 (304) km s−1, the proton
flux npvpl is 2.8 (3.84) in units of 108 cm s−2, the alpha abun-
dance nα/np is 4.56% (3.6%), and the meridional component of
the proton-alpha velocity difference vαp,l is 23 (5) km s−1. These
values are consistent with in situ measurements such as made by
Ulysses (McComas et al. 2000). Moreover, the fast (slow) solar
wind reaches the Alfvén point at 10.7 (13.3) R	, beyond which
vpl increases only slightly with increasing r. On the other hand,
for r >∼ 0.3 AU the meridional alpha speed vαl decreases rather
than increases with r as a consequence of the prescribed vαp,l pro-
file. If examining the ratio of vαp,l to the meridional Alfvén speed
vAl = Bl/

√
4πρ, one may find that for the fast solar wind this ra-

tio decreases only slightly from 0.98 at 0.3 AU to 0.82 at 1 AU,
while for the slow wind it shows a substantial variation from
0.88 at 0.3 AU to 0.29 at 1 AU. The modeled vαp,l/vAl can be
seen to agree with the Helios measurements as given by Fig. 11
of Marsch et al. (1982a). Note that a value of vαp,l = 49 km s−1

at 0.3 AU is not unrealistic for slow solar winds, even larger
values have been found by Helios 2 when approaching perihe-
lion (Marsch et al. 1981). Moving on to the temperature profiles,
one may see that the T⊥p profiles inside 5 R	 are in reasonable
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Fig. 2. Radial distribution between 1 R	 and 1 AU of the adopted meridional flow parameters for the fast (left column) and slow (right) solar wind.
a) and c), the meridional flow speeds of protons (vpl) and alpha particles (vαl). b) and d), the ion temperatures T ‖k (dotted lines), T⊥k (dashed lines),
and Tk = (T ‖k + 2T⊥k )/3 (solid lines) where k = p, α. The construction of T ‖,⊥k is described in Sect. 3.2. The error bars in b) and d) represent the
uncertainties of the UVCS measurements of the effective proton temperature as reported by Kohl et al. (1998) for a coronal hole, and by Frazin
et al. (2003) for a streamer, respectively. Note that both measurements are typical of solar minimum conditions. Moreover, the asterisks in a) and
c) denote the Alfvén point, where the meridional Alfvénic Mach number (defined by Eq. (18)) equals unity.

agreement with the UVCS line-width measurements for both the
fast and slow solar wind.

4. Numerical results

Having described the meridional magnetic field and flow pro-
files, we may now address the following questions: to what ex-
tent is the total angular momentum loss of the Sun affected by
the ion temperature anisotropies? and how is the angular mo-
mentum budget distributed among particle momenta, the mag-
netic torque, and the torque due to ion temperature anisotropies?
To this end, let us first examine the fast and then the slow so-
lar wind solutions. In the computations, we take AΩ = 2.865 ×
10−6 rad s−1, which corresponds to a sidereal rotation period
of 25.38 days.

4.1. Fast solar wind

Figure 3 presents the radial profiles of (a) the proton azimuthal
speed vpφ; (b) the alpha one vαφ; and (c) the ion angular momen-
tum fluxes Lk (k = p, α), their sum LP, the flux due to the mag-
netic torque LM, and that due to temperature anisotropies Lani
(see Eq. (16)). Note that the dash-dotted curves in Fig. 3c plot
negative values. In Figs. 3a and b, the ion azimuthal speeds for
the isotropic model with identical meridional flow parameters
are given by the dashed lines for comparison. The fast wind pro-
file corresponds to ΓpE = 1.5 and ΓαE = 1.9.

For the chosen ΓpE and ΓαE, it is found that λ = 1.058.
Consequently, the total angular momentum loss rate per stera-
dian L is 1.8 (here and hereafter in units of 1029 dyne cm sr−1)

in the anisotropic case, and is only modestly enhanced com-
pared with the isotropic case, for which L = 1.71. Furthermore,
Figs. 3a and b indicate that the radial dependence of the ion az-
imuthal speed vpφ or vαφ in the anisotropic model is similar to that
in the isotropic one. For instance, both models yield that with in-
creasing distance the alpha particles develop an azimuthal speed
in the direction of counterrotation with the Sun: vαφ becomes
negative beyond 7.95 (8.35) R	 in the anisotropic (isotropic)
model. The difference between the isotropic and anisotropic
cases becomes more prominent at large distances where βΔ

becomes increasingly significant, as would be expected from
Eq. (17). Take the values of vpφ and vαφ at 1 AU. The isotropic
(anisotropic) model yields that vpφ = 2.54 (3.46) km s−1 and
that vαφ = −12.6 (−11.7) km s−1 at 1 AU. Note that the changes
introduced to the ion azimuthal speeds by pressure anisotropies
(∼0.9 km s−1 for both protons and alpha particles) play an impor-
tant role in the distribution of the angular momentum budget L
among different contributions, as shown by Fig. 3c. The proton
contribution Lp exceeds LM for r >∼ 57 R	 and Lp attains 5.07
at 1 AU, significantly larger than the magnetic part LM = 1.48
at the same location. In fact, the overall particle contribution LP,
which increases with distance, overtakes the magnetic contribu-
tion LM from 170.5 R	 onwards, despite the fact that the alpha
contribution tends to offset the proton one. The dominance of LP
over LM happens in conjunction with the increasing importance
of Lani, the flux due to total pressure anisotropy which is in the
direction of counterrotation with the Sun. In contrast, without
pressure anisotropies, at 1 AU it turns out that even though a
value of 3.73 is found for Lp, it is almost cancelled by an Lα of
−3.49. The resulting LP is thus 0.23, substantially smaller than
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Table 1. Profiles for some solar wind parameters in the region r >
0.3 AU.

Fast wind Slow wind

(vαp,l)o 23x−1.15 km s−1 a 5x−1.9 km s−1

(Tp)o 2.8 × 105 x−1 K 5.5 × 104 x−0.94 K
(Tα)o 1.4 × 106 x−1.3 K 1.7 × 105 x−0.96 K
(Γp)o ΓpEx0.33 ΓpEx−0.13

(Γα)o ΓαEx0.23 ΓαEx0.19

a Please see Sect. 3.2 for details.

LM, which is nearly identical to the value found in the anisotropic
model. This contrast between anisotropic and isotropic cases is
understandable since it follows from Eq. (13) that, given that the
constant AL does not vary much from the isotropic to anisotropic
model, the change of LP should be largely offset by that of Lani.

Figure 4 expands the obtained results by displaying the de-
pendence on ΓpE and ΓαE of (a) the factor λ, (b) the proton az-
imuthal speed vpφ and (c) the alpha one vαφ at two different dis-
tances plotted by the different linestyles indicated in (b), as well
as (d) the constituents comprising the angular momentum flux
at 1 AU. In addition to the individual ion contributions Lp and
Lα, and the magnetic one LM, the overall particle contribution
LP = Lp+Lα is also given. Note that −Lα instead of Lα is plotted
in Fig. 4d. Moreover, the horizontal bars on the left of Figs. 4b
and c represent the azimuthal ion speeds derived in the isotropic
case at the corresponding locations for comparison. The open
circles correspond to the cases where ΓαE = 1.3. It turns out that
at any given ΓpE each parameter varies monotonically from the
value with ΓαE = 0.7, represented by the end of the arrow, to
the value with ΓαE = 1.9 given by the arrow head. In Fig. 4b
the arrows have been slightly shifted from one another to avoid
overlapping.

From Fig. 4a one can see that λ decreases with increasing
ΓpE or ΓαE, ranging from 1.101 at the upper left to 1.058 at the
lower right corner. The deviation of λ from unity, albeit modest,
indicates that the changes introduced in the total angular mo-
mentum loss due to the ion pressure anisotropies are not neg-
ligible. From Figs. 4b and c one can see that between 0.3 to
1 AU, the magnitude of the azimuthal speeds of both species
decreases with increasing distance. Furthermore, at either 0.3
or 1 AU, both vpφ and vαφ increase when ΓpE or ΓαE increases.
Take the values at 1 AU for instance. One can see that vpφ ranges
from 2.36 to 3.46 km s−1, while vαφ varies between −12.8 and
−11.7 km s−1. For the majority of the solutions both vpφ and vαφ
tend to be larger in the algebraic sense than the corresponding
values in the isotropic model, which yield 2.54 and −12.6 km s−1

for protons and alpha particles, respectively. However, at 0.3 AU
vpφ or vαφ tends to be smaller in the anisotropic than in the
isotropic case. Now vpφ and vαφ vary in the intervals [2.37, 3.77]
and [−15.8,−14.2] km s−1, respectively. For comparison, the
isotropic model yields a vpφ (vαφ) of 3.33 (−14.7) km s−1. Now
let us examine the specific angular momentum fluxes Lp, Lα and
LM at 1 AU. Figure 4d indicates that LM has the weakest param-
eter dependence, which is easily understandable given that to a
good approximation tanΦ ≈ −AΩR/vkl where k may be taken
to be p or α (see Eq. (10)). Besides, the parameter dependence
of Lα is rather modest, varying by <∼10% from −3.55 to −3.23
when ΓpE or ΓαE changes. On the other hand, Lp changes sub-
stantially, ranging between 3.46 and 5.07. Hence the overall par-
ticle contribution LP also shows a significant parameter depen-
dence. In particular, LP may exceed LM when ΓpE >∼ 1.3. For the
solutions examined, LP can be found to be positive and attain

Fig. 3. Radial distributions of a) the proton azimuthal speed vpφ, b) the
alpha one vαφ, and c) various contributions to the angular momentum
budget in an e − p − α solar wind with ion temperature anisotropies.
In a) and b), the profiles derived for a solar wind with identical flow
parameters where ion temperature anisotropies are neglected are given
by dashed lines for comparison. Panel c) depicts the individual ion
angular momentum fluxes Lp and Lα, their sum LP, and the fluxes
associated with the magnetic stresses LM, and with the temperature
anisotropies Lani (see Eq. (16)). The dash-dotted lines represent nega-
tive values.

its maximum of LP = 1.84 when [ΓpE, ΓαE] = [1.5, 1.9]. Only
for the lowest values of ΓpE and ΓαE can one find a negative LP

of −0.084. Moreover, the protons always show a partial corota-
tion, i.e., Lp > 0. From this we conclude that the ion temperature
anisotropies are unlikely the cause of the tendency for Lp or LP

to be negative for the fast solar wind as indicated by the Helios
measurements (Pizzo et al. 1983; Marsch & Richter 1984).

4.2. Slow solar wind

Figure 5 presents, in the same fashion as Fig. 4, the depen-
dence on ΓpE and ΓαE of various quantities derived for the slow
solar wind. A comparison with Fig. 4 indicates that nearly all
the features in Fig. 5 are reminiscent of those obtained for fast
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Fig. 4. Values of several parameters as a function of ΓpE, the proton
temperature anisotropy at 1 AU. a) The factor λ, the deviation of which
from unity represents the correction to the total angular momentum loss
due to the introduction of ion pressure anisotropies; b) and c) the proton
and alpha azimuthal speeds vpφ and vαφ at two different heliocentric dis-
tances given by different line styles as indicated in b); d) various com-
ponents in the angular momentum flux at 1 AU including individual ion
contribution Lp and Lα, the overall particle contribution LP = Lp + Lα,
as well as the contribution from magnetic stresses LM. Note that −Lα in-
stead of Lα is given in d). The short horizontal bars in panels b) and c)
represent the azimuthal ion speeds derived in the isotropic model for
comparison. Furthermore, in panel b) the curve corresponding to 1 AU
is slightly shifted relative to that for 0.3 AU to avoid the two overlapping
each other. The open circles correspond to the cases where ΓαE is fixed
at 1.3, where ΓαE is the alpha temperature anisotropy at 1 AU. At a given
ΓpE each parameter varies monotonically from the value with ΓαE = 0.7,
represented by the end of the arrow, to the value with ΓαE = 1.9 given
by the arrow head. The ranges in which ΓpE and ΓαE vary are determined
from the Helios measurements (see text for details).

solar wind solutions. However, some quantitative differences ex-
ist nonetheless. For instance, when ΓpE is held fixed, all the ex-
amined parameters for the slow wind vary little even though ΓαE
changes considerably from 0.8 to 2. In contrast, the parameters
for the fast wind show an obvious ΓαE dependence. This differ-
ence can be largely attributed to the fact that in the slow wind
the ions are substantially cooler than in the fast wind. Figure 5a
shows that λ ranges from 0.94 to 1.016. In other words, rela-
tive to the isotropic case, the solar angular momentum loss rate

Fig. 5. Similar to Fig. 4 but for the slow solar wind. Here the open cir-
cles correspond to the cases where ΓαE is fixed at 1.4, and the arrow
represents how the specific parameter varies at a given ΓpE when ΓαE

increases from 0.8 to 2.0.

per steradian in the anisotropic models may be enhanced or re-
duced by up to 6%. If examining Figs. 5b and c, one may find
that at both 0.3 and 1 AU, the azimuthal speeds of both ion
species, vpφ and vαφ, are larger algebraically in the anisotropic
models than in the isotropic one. The difference between the two
is more prominent at 0.3 AU, where the isotropic model yields
that [vpφ, vαφ] = [3.49,−18.1] km s−1, whereas the anisotropic
models yield that with increasing ΓpE, vpφ increases from 3.76 to
5.04 km s−1, and vαφ varies between −17.8 to −16.3 km s−1. As
for the ion azimuthal speeds at 1 AU, one can see that varying
ΓpE leads to a vpφ varying between 1.18 and 1.72 km s−1, and
a vαφ ranging from −5.85 to −5.31 km s−1. The corresponding
changes in the specific ion angular momentum fluxes are shown
by Fig. 5d, which indicates that the proton one Lp increases with
increasing ΓpE from 2.52 to 3.67, and likewise, the alpha one
Lα increases from −1.83 to −1.66. On the other hand, the flux
associated with magnetic stresses LM hardly varies, and a value
of 3.36 can be quoted for all the models examined. Therefore in
the parameter space explored, LM may be smaller than Lp, which
is however offset by the alpha contribution that is always in the
direction of counter-rotation to the Sun. In fact, the alpha contri-
bution is so significant that the overall particle contribution LP
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Fig. 6. Radial dependence of the ratio of the alpha to the proton ve-
locity fluctuation amplitudes δuα/δup induced by Alfvénic activities in
super-Alfvénic portions of the fast solar wind. The dashed curves corre-
spond to the isotropic model, while the hatched areas give the possible
range δuα/δup may occupy when the parameters ΓpE and ΓαE vary in the
ranges given in text. Both the zero-frequency (upper portion) and WKB
(lower) estimates are given.

never exceeds LM. In other words, incorporating ion temperature
anisotropy cannot resolve the outstanding discrepancy between
previous models and observations concerning the relative im-
portance of particle and magnetic contributions in the angular
momentum budget of the solar wind.

5. Discussion

As demonstrated by Li & Li (2008), the discussion on the an-
gular momentum transport also allows us to say a few words
on the frequency spectra S k( f ) (k = p, α) of the ion velocity
fluctuations during Alfvénic activities in the fast solar wind in
the super-Alfvénic portion where M2

T � 1. This is due to the
well-known change of the properties of Alfvénic fluctuations
around some fc ≈ vcm,a/(4πra), where vcm,a is the speed of center
of mass evaluated at the Alfvén point ra (see e.g., Heinemann
& Olbert 1980; Li & Li 2008). For typical fast wind parame-
ters, fc ≈ 0.5−1 × 10−5 s−1. While the fluctuations with fre-
quencies f >∼ fc are genuinely wave-like and may be described
by the WKB limit given the slow spatial variation of flow pa-
rameters in the region in question, those with f <∼ fc behave
in a quasi-static manner and may be described by the solutions
to the angular momentum conservation law which also governs
the zero-frequency fluctuations. As shown by Li & Li (2008)
who neglected the species temperature anisotropy, in the region
r >∼ 0.2 AU which will be explored by the Solar Orbiter and Solar
Probe, the ratio of the alpha to proton velocity fluctuation am-
plitude δuα/δup can be an order-of-magnitude larger for f < fc
than for f > fc. Hence one may expect that, if the proton velocity
fluctuation spectrum S p( f ) is somehow smooth around fc, then
the alpha one S α( f ) will show an apparent spectral break. Now
let us revisit this problem in light of the discussion presented in
this paper and see what changes the pressure anisotropies may
introduce.

Restrict ourselves to either the high-latitude region or the
region inside say 100 R	 such that the magnetic field may be
seen as radial. Furthermore, suppose that the waves are propa-
gating parallel to the magnetic field in the empirical fast wind
profiles detailed in Sect. 3. Figure 6 presents the radial depen-
dence of δuα/δup in the region between 40 and 100 R	 for both
the zero-frequency (upper part) and WKB (lower part) solutions.
For comparison, the dashed curves represent the corresponding

results in the isotropic model. To construct Fig. 6, all the possible
values of ΓpE and ΓαE have been examined. As a result, at any
radial location the ratio δuα/δup varies from model to model,
and the range in which this ratio may occupy is given by the
hatched area. The zero-frequency solutions are obtained by solv-
ing Eq. (20), while for hydromagnetic WKB Alfvén waves it is
well known that δuα/δup = |(vph− vα)/(vph− vp)|, where vph is the
wave phase speed and given by (e.g., Barnes & Suffolk 1971;
Isenberg 1984)

vph = vcm +

√
v2A

(
1 − 4πPΔ

B2

)
− ρ̂αρ̂pv

2
αp,

in which vcm = ρ̂pvp + ρ̂αvα is the speed of center of mass, and
ρ̂k = ρk/ρ (k = p, α) defines the fractional ion mass density.

From Fig. 6 one can see that the zero-frequency and
WKB solutions are well separated from each other, in the
isotropic and anisotropic cases alike. For the isotropic model,
δuα/δup in the zero-frequency case increases monotonically
from 3.79 at 40 R	 to 4.68 at 100 R	. On the other hand, in
the WKB case it decreases first from 0.22 at 40 R	 and attains
its minimum of 0.083 at 60.3 R	 and then increases to 0.15 at
100 R	. The difference in δuα/δup between the zero-frequency
and WKB solutions may be slightly smaller in the anisotropic
than in the isotropic case for some combinations of [ΓpE, ΓαE],
but the difference is still quite significant. From this we can con-
clude that, with realistic ion temperature anisotropies included,
the alpha velocity fluctuation spectrum S α( f ) during Alfvénic
activities will also show an apparent break near fc, if the proton
one S p( f ) is smooth there. This break is entirely a linear prop-
erty, and has nothing to do with the nonlinearities that may also
shape the fluctuation spectra.

6. Summary

This study has been motivated by the apparent lack of an anal-
ysis on the angular momentum transport in a multicomponent
solar or stellar wind with differentially flowing ions and species
temperature anisotropy. Moreover, there has been an outstand-
ing discrepancy between available measurements and models
concerning the relative importance of the particle LP and mag-
netic contribution LM to the solar angular momentum loss rate
per steradian L. The Helios measurements indicate that for fast
(slow) solar wind with vp >∼ 600 (<∼400) km s−1, LP tends to be
negative (positive), with the positive sign denoting the direction
of corotation with the Sun. Furthermore, LP tends to be larger
than LM in the slow wind. The behavior of LP derives from that
of individual ion angular momentum fluxes, Lp and Lα, thereby
calling for a multifluid approach.

Starting with a general set of multifluid transport equa-
tions with gyrotropic species pressure tensors, we have de-
rived the equations for both the angular momentum conservation
(Eqs. (10) and (20) in Sect. 2), and the energy and linear momen-
tum balance (Eqs. (A.1) to (A.4) in the Appendix). These equa-
tions are not restricted to radial outflows in the equatorial plane,
instead they are valid for arbitrary axisymmetrical winds that in-
clude two major ion species, and therefore are expected to find
applications in general outflows from late-type stars. To focus
on the problem of angular momentum transport, we refrained
from solving the full set of equations governing the meridional
dynamics. Rather, we constructed, largely based on the avail-
able in situ measurements, the empirical profiles for the merid-
ional magnetic field and flow parameters. Only the ion tempera-
ture anisotropies are considered, i.e., the electron temperature is
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seen as isotropic. For both the fast and slow solar wind profiles,
we solved the angular momentum conservation law (Eqs. (10)
and (20)) to examine how the azimuthal speeds of protons vpφ
and alpha particles vαφ, as well as the individual components in
the solar angular momentum budget are influenced by the ion
temperature anisotropies. To this end, solutions to the isotropic
version are obtained for comparison.

Our main conclusions are:

1. From the derived equations governing the energy transport,
a simple analysis given in the Appendix yields that the adi-
abatic cooling may be considerably influenced with the in-
troduction of the azimuthal components. Such an influence
is understandably more prominent in the low-latitude re-
gions. This means, when modeling the species temperature
anisotropy, for a quantitative comparison of model compu-
tations to be made with the near-ecliptic measurements such
as made by Helios, the spiral magnetic field has to be taken
into account.

2. In agreement with the single-fluid case (Weber & Davis
1970; Weber 1970), incorporating species temperature
anisotropy leads to a situation where the total angular mo-
mentum loss rate per steradian L is determined by the be-
havior of the solution to the angular momentum conservation
law in the vicinity of the Alfvén point where the combined
Alfvénic Mach number MT = 1. However, MT has to take
into account the contribution from both ion species, as de-
fined by Eq. (18).

3. Relative to the isotropic case, the introduced species temper-
ature anisotropy may enhance or decrease L by up to 10%,
and introduce an absolute change of up to ∼1.8 km s−1 in in-
dividual ion azimuthal speeds in the region between 0.3 and
1 AU. While these changes seem modest, the correspond-
ing changes in the angular momentum fluxes convected by
protons Lp or alpha particles Lα may change substantially.
In contrast, the flux associated with magnetic stresses LM
hardly varies.

4. However, introducing ion temperature anisotropies cannot
resolve the discrepancy between in situ measurements and
models. For the fast wind solutions, while in extreme
cases LP may become negative Lp always stays positive. On
the other hand, for the slow solar wind solutions examined,
LP never exceeds LM even though LM may be smaller than
the individual ion contribution. This is because, for both the
slow and fast wind solutions, Lp and Lα always have opposite
signs.

5. The discussion on the angular momentum transport has some
bearing on the ion velocity fluctuation spectra S k( f ) (k =
p, α) during Alfvénic activities in the super-Alfvénic regions,
which are likely to be explored by future missions such as
Solar Orbiter and Solar Probe. In agreement with Li & Li
(2008) where species temperature anisotropies are neglected,
an analysis based on the WKB and zero-frequency solu-
tions yields that S α( f ) will show an apparent break around
some critical frequency fc if S p( f ) is smooth there. This
fc ∼ 0.5−1 × 10−5 s−1 is the well-known frequency that sep-
arates the genuinely wave-like fluctuations from quasi-static
ones.
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Appendix A: Derivation of equations governing
the meridional dynamics

In Sect. 2, we have demonstrated that the vector equations
governing a time-independent multicomponent solar wind with
species temperature anisotropy are allowed to be decomposed
into a force balance condition across the poloidal magnetic field
and a set of transport equations along it. The azimuthal dynamics
has been discussed in the text, whereas this Appendix provides
some discussion on the poloidal dynamics. In particular, we shall
derive the equations governing the poloidal motion vkl of ion
species (k = p, α), and the species temperatures T ‖,⊥s (s = e, p, α)
in rather general situations.

Due to the presence of vkN in the l component of the ion
momentum Eq. (2), one may expect that the N-component of
Eq. (2) has to be solved. In fact, there is no need to do so because
vkN appears only in the difference v jN − vkN , which may be found
from the φ component of Eq. (2). Substituting v jN − vkN into the
l component of Eq. (2) will then eliminate the cumbersome Ωk

and vkN . Note that this technique, first devised by McKenzie et al.
(1979), ensures the conservation of not only total momentum but
also total energy (see Li & Li 2006). Specifically, the resulting
equations for the poloidal dynamics are(

nkvkl

Bl

)′
= 0, (A.1)

vkl(vkl)′ − v2kφ(ln R)′ + tanΦ
vkl

R
(Rvkφ)′

−(Ckl + tanΦCkφ) +
GM	

r
(ln r)′

+
1

nkmk

{
(p‖k)′ − pΔk [ln (Bl secΦ)]′

}
+

Zk

nemk

{
(p‖e)

′ − pΔe [ln (Bl secΦ)]′
}
= 0, (A.2)

vsl

(
T ‖s

)′
+ 2vslT

‖
s [ln (vsl secΦ)]′

+
1

nskB

⎡⎢⎢⎢⎢⎣∇ · q‖s −Qs
...∇(b̂b̂) − δE

‖
s

δt
− H‖s

⎤⎥⎥⎥⎥⎦ = 0, (A.3)

vsl

(
T⊥s

)′ − vslT
⊥
s [ln (Bl secΦ)]′

+
1

nskB

[
∇ · q⊥s +

Qs

2

...∇(b̂b̂) − δE
⊥
s

δt
− H⊥s

]
= 0, (A.4)

where pΔs = p‖s − p⊥s (s = e, p, α), Ck = δMk/δt +
(Zknk/ne)δMe/δt results from Coulomb frictions, and the prime ′
represents the derivative with respect to the arclength l. When
deriving Eqs. (A.3) and (A.4), we have used the fact that the
expression

∇‖ · us = cos2Φv′sl + sin2Φvsl(ln R)′

+ cosΦ sinΦR(vsφ/R)′,

may be simplified by expressing vsφ via the alignment condi-
tion (10), the result being

∇‖ · us = vsl [ln (vsl secΦ)]′ .

Similarly, one may find that

∇⊥ · us = −vsl [ln (Bl secΦ)]′ .

Now let us compare these equations with those in Isenberg
(1984). It is straightforward to show that Eqs. (A.3) and (A.4)
are equivalent to Eqs. (A.3) and (A.4) in Isenberg (1984) by spe-
cializing to a spherically symmetric solar wind and by noting
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that (ln Bl)′ = −2/r. On the other hand, using the alignment con-
dition (10) one may find that

vkl (vkl)′ − v2kφ (ln R)′ + tanΦ
vkl

R

(
Rvkφ

)′
=⎛⎜⎜⎜⎜⎝v2kl

2
sec2Φ

⎞⎟⎟⎟⎟⎠′ −
⎛⎜⎜⎜⎜⎝A2
Ω

R2

2

⎞⎟⎟⎟⎟⎠′ . (A.5)

Again specializing to a spherical solar wind, one then finds that
Eq. (A.2) is equivalent to (A.2) in Isenberg (1984). It should be
stressed that although working in a frame of reference corotat-
ing with the Sun, as did Isenberg (1984), substantially simplifies
the algebra, it does not offer the information on the specific form
of the spiral angle Φ, whose functional dependence on the flow
speeds has to be assumed a priori. In practice, Isenberg (1984)
assumed that the velocity of center of mass ucm is radial in an
inertial frame beyond 10 R	, which is certainly a good assump-
tion for the present slow-rotating Sun. However, from our discus-
sion on the azimuthal dynamics, there is in general no guarantee
that ucm is radial, and the deviation may be substantial for winds
that flow from a faster rotating star.

Introducing azimuthal components may influence the ion
flow speeds vkl both directly and indirectly. The direct conse-
quence is that azimuthal components may introduce into the re-
duced meridional momentum Eq. (A.2) an effective force (see
the first three terms). Note that in a corotating frame the mag-
nitude of the ion velocity becomes vkl secΦ, from relation (A.5)
one may see that in such a frame all particles move in the same
centrifugal potential A2

Ω
R2/2. Therefore in effect the introduced

force tends to reduce the magnitude of the ion speed difference
with increasing distance as secΦ tends to increase. This effect
has been explored in detail in Li & Li (2006) and Li et al. (2007),
where it is shown that the influence may play an important part
in the force balance for the solar wind. In fact, introducing solar
rotation alone is able to reproduce the vαp profile measured by
Ulysses beyond 2 AU if a proper value of vαp is imposed there.
On the other hand, vkl may be altered indirectly by the modi-
fied pressure gradient force due to changes in the temperatures,
which in turn are caused by the changes in the heat fluxes (the
third term in Eqs. (A.3) and (A.4)) and through the adiabatic
cooling (the second term). A detailed discussion on the former
requires a specific form for the heat flux, which is beyond the
scope of the present paper. As a consequence, we shall focus on
the latter instead.

Neglecting the terms in the second pair of square parenthe-
ses, Eqs. (A.3) and (A.4) give

T ‖s ∝ cos2Φ/v2sl, T
⊥
s ∝ Bl secΦ. (A.6)

Note that the relation governing T⊥s simply reflects the con-
servation of magnetic moment. Now that in the region say
r > 10 R	 secΦ is significant and increases with r, T ‖s (T⊥s )
may be substantially reduced (enhanced) relative to the case
where Φ ≡ 0. This effect is particularly significant in the
near-ecliptic region and for the slow solar wind. For instance,
restrict ourselves to the equatorial plane and consider the
region between say 10 R	 and 1 AU. Suppose vsl remains
constant and vsl ≈ AΩRE = 430 km s−1. Now that roughly
speaking tanΦ ≈ −AΩr/vsl, when the spiral field is con-
sidered, T ‖s (T⊥s ) at 1 AU is 1/2 (

√
2) times the value for a

purely radial magnetic field. This suggests that for making any

quantitative comparison of the modeled species temperature
anisotropy with the near-ecliptic measurements such as made by
Helios, the spiral magnetic field has to be considered.

For completeness, we note that the force balance condition
across the N direction comes from the N component of the total
momentum, which reads

∑
k

ρk

⎛⎜⎜⎜⎜⎝ v2kl

Rc
− v2kφ

∂

∂N
ln R

⎞⎟⎟⎟⎟⎠ + ∂
∂N

(
P⊥ +

B2

8π

)

− 1
4π

(
1 − 4πPΔ

B2

) ⎛⎜⎜⎜⎜⎝B2
l

Rc
− B2

φ

∂

∂N
ln R

⎞⎟⎟⎟⎟⎠
+

∑
k

ρk
GM	

r
∂

∂N
ln r = 0, (A.7)

where Rc = êN · (êl · ∇êl) is the signed curvature radius of the
poloidal magnetic line of force. Obviously, this force balance
condition determines the poloidal magnetic field configuration
in response to the electric currents associated with the flow.
This equation, combined with the transport equations along the
meridional magnetic lines of force, may be solved alternately to
find a self-consistent solution to the vector equations by using
the approach by Pneuman & Kopp (1971) or Sakurai (1985).

References

Banaszkiewicz, M., Axford, W. I., & McKenzie, J. F. 1998, A&A, 337, 940
Barakat, A. R., & Schunk, R. W. 1982, Plasma Phys., 24, 389
Barnes, A., & Suffolk, G. C. J. 1971, J. Plasma Phys., 5, 315
Belcher, J. W., & MacGregor, K. B. 1976, ApJ, 210, 498
Bouvier, J., Forestini, M., & Allain, S. 1997, A&A, 326, 1023
Frazin, R. A., Cranmer, S. R., & Kohl, J. L. 2003, ApJ, 597, 1145
Gary, S. P., McKean, M. E., Winske, D., et al. 1994, J. Geophys. Res., 99, 5903
Heinemann, M., & Olbert, S. 1980, J. Geophys. Res., 85, 1311
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