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1. Introduction

The concept of entanglement, originated by Einstein, Podolsky and Rosen (EPR) for
arguing the incompleteness of quantum mechanics, plays a key role in understanding
some fundamental problems in quantum mechanics. Quantum entangled states have
been vastly studied by physicists due to their potential usage in quantum information
and quantum communication. In a quantum entangled system, a measurement
performed on one part of the system provides information about the remaining part,
and this is now known as the basic feature of quantum mechanics, weird though it
seems. For a good understanding entanglement, Ref. [1] will be useful. Beyond all
entangled states, the continuous variable entangled states are of great application
in quantum optics and atomics area, where the continuous variables are just the
quadrature phase of optics field. Detail acquaintance of continuous variable can
refer to Ref. [2, 3]. And it can be inferred that continuous variable entanglement
states such as topological entanglement may play an important roll in understanding
famous and obscure phenomenons in low temperature physics such as the fractional
electron charge effect [4]. On the other hand, the theoretical research has go ahead of
experiment to construct various continuous variable entangled states: idealized EPR
state |η〉 [5], two mode coherent entangled state |α, x〉 [6], and arbitrary multi-mode
entangled state [7] and so on. All these mentioned states have been constructed and
property-analyzed basing on IWOP technique [8–11]. Contrast to classical quantum
optical states, these states present nonclassical properties such as partial non-positive
of Wigner distributive and Mandel factor [12], divergence in special point in phase
space of Glauber-Sudarshan representation [13]. Among these states, CES is of special
interesting due to its intrinsic nature of the merging of coherence and entanglement.
As far as we know, multipartite CES have been write down in Ref. [6, 15]. Here we
propose a new tripartite CES |β, γ, x〉µντ , which is the generalization version of the old
tripartite CES |β, γ, x〉. This generalization is not trivial. As tripartite CES, we find
that it can play as the continuous base in Hilbert space of square-integrated property,
after checking its completeness and orthogonality.

This paper is arranged as follows, in Sec. 2 the explicit form of tripartite CES
|β, γ, x〉µντ is present in Fock space by virtue of the technique of integration within an
ordered product of operators (IWOP), and then some main properties are analyzed
in Sec. 3. The protocol for generating the tripartite CES is proposed In Sec. 4
using asymmetric beam splitter. Sec. 5 is devoted to briefly discussing some potential
applications of |β, γ, x〉µντ in quantum optics. A brief conclusion is presented in the
last section.

2. The Introduction of tripartite CES

For a physical state, it is hoped that it can span a complete space. For example, the
Fock state and the coherent state are both complete. It has been shown [7] that by
constructing miscellaneous normally ordered Gaussian integration operators, which are
unity operators, and then considering their decomposition of unity we may derive new
quantum mechanical states possessing the completeness relation and orthogonality.
For example, from the normally ordered Gaussian form of unity

∫

d2z

π
: exp

[

−(z∗ − a†)(z − a)
]

:= 1 (1)
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and using the normal ordering form of vacuum state projector |0〉〈0| =: exp(−a†a) :
[16, 17], where : : is signal of normal ordering, we can make the decomposition

: exp
[

−(z∗ − a†)(z − a)
]

:= |z〉〈z| (2)

so the form of coherent state |z〉 = exp(− |z|2
2

+ za†) |0〉 emerges. Similarly, by
examining

∫

d2η

π
: exp

[

−(η∗ − a†1 + a2)(η − a1 + a†2)
]

:= 1 (3)

and decomposing the integrand in Equation (3) we observe the emergence of bi-particle

ideal EPR state |η〉 = exp[− 1

2
|η|2 +ηa†1−η∗a†2+a†1a

†
2] |00〉 [5]. And if we go further, by

decomposition the following unity of the Gaussian operator integration within normal
ordering

∫ ∞

−∞

dx√
π

∫

d2α

2π
: exp

[

−
(

x− µX1 + νX2√
2λ

)2
]

× exp

{

−1

2

[

α∗ − 1

λ
(νa†1 − µa†2)

] [

α− 1

λ
(νa1 − µa2)

]}

:= 1 (4)

after the decomposition, we can get the expression of the state

|α, x〉µν = exp

[

−1

2
x2 − 1

4
|να|2 + λαa†1 +

µ

λ

(

x− αµ

2

)

a†1

+
ν

λ

(

x− αµ

2

)

a†2 −
1

(2λ)2

(

µa†1 + νa†2

)2
]

|00〉 (5)

This is the new bipartite CES proposed in Ref. [18], with µ2 + ν2 = 2λ2. Using the

bosonic communicative relation [ai, a
†
j ] = δij , we have

a1 |α, x〉µν =
[

αλ +
µ

λ

(

x− αµ

2

)

− µ

2λ2
(µa†1 + νa†2)

]

|α, x〉µν (6a)

a2 |α, x〉µν =
[ ν

λ

(

x− αµ

2

)

− ν

2λ2
(µa†1 + νa†2)

]

|α, x〉µν (6b)

which satisfy the following eigenequations

1

2
(µX1 + νX2) |α, x〉µν =

λx√
2
|α, x〉µν (7a)

(νa1 − µa2) |α, x〉µν = ναλ |α, x〉µν , (7b)

which means |α, x〉µν is actually the common eigenvector of (µX1 + νX2) and
(νa1 − µa2), and [(µX1 + νX2), (νa1 − µa2)] = 0, and

Xi = (ai + a†i )/
√

2, Pi = (ai − a†i )/(
√

2i) (8)

However, if we want to obtain the expression of tripartite CES, it may become tedious
to construct such a complex quadratic gaussian polynomial of three-mode of generate
operator in entangled form to derive tripartite CES. Fortunately, we can stride over
this problem just oppositely, first constructing the tripartite counterpart formally
analogue to bipartite CES, then checking it satisfies the similar relationship Equation
(3). Along this way, tripartite CES |β, γ, x〉µντ can be introduced as

|β, γ, x〉µντ = exp

{[

−3

4
x2 − 1

6ν
(β∗γ + βγ∗)µτ2 − 1

6
|γ|2τ2

(

1 +
µ2

ν2

)
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− 1

6
|β|2

(

ν2 + τ2
)

]

+
1

3λ

[(

β(ν2 + τ2) +
γµτ2

ν
+ 3xµ

)

a†1

+
(

−βµν + γτ2 + 3xν
)

a†2

+

(

−γ(µ
2 + ν2)τ

ν
− βµτ + 3xτ

)

a†3

]

− 1

6λ2

(

µa†1 + νa†2 + τa†3

)2
}

|000〉 (9)

where µ, ν, τ are three independent parameters, and 3λ2 = µ2 + ν2 + τ2, this identity
hold to make sure it can be generated by beam-splitter which will be instructed in
Sec. 4. In particular, when µ = ν = τ = 1, Equation (9) will reduce to

|β, γ, x〉 = exp

{

−3

4
x2 − 1

6

(

βγ∗ + β∗γ + 2|β|2 + 2|γ|2
)

+

[

x+
1

3
(2β + γ)

]

a†1 +

[

x+
1

3
(−β + γ)

]

a†2

+

[

x+
1

3
(−β − 2γ)

]

a†3 −1

6
(a†1 + a†2 + a†3)

2

}

|000〉 (10)

This is the so called tripartite CES introduced in Ref. [14]. Using the bosonic

commutative relation [ai, a
†
j ] = δij , we have

a1 |β, γ, x〉µντ =
1

3λ

[(

β(ν2 + τ2) +
γµτ2

ν
+ 3xµ

)

−µ
λ

(

µa†1 + νa†2 + τa†3

)]

|β, γ, x〉µντ (11a)

a2 |β, γ, x〉µντ =
1

3λ

[(

−βµν + γτ2 + 3xν
)

−ν
λ

(

µa†1 + νa†2 + τa†3

)]

|β, γ, x〉µντ (11b)

a3 |β, γ, x〉µντ =
1

3λ

[(

−γ(µ
2 + ν2)τ

ν
− βµτ + 3xτ

)

− τ
λ

(

µa†1 + νa†2 + τa†3

)]

|β, γ, x〉µντ (11c)

Combining the equations (10), we obtain the eigenequations of tripartite CES
|β, γ, x〉µντ

1

3
(µX1 + νX2 + τX3) |β, γ, x〉µντ =

λx√
2
|β, γ, x〉µντ (12a)

(νa1 − µa2) |β, γ, x〉µντ = νβλ |β, γ, x〉µντ (12b)

(τa2 − νa3) |β, γ, x〉µντ = τγλ |β, γ, x〉µντ (12c)

So we see that |β, γ, x〉µντ is actually the common eigenvector of 1

3
(µX1 +

νX2 + τX3), (νa1 − µa2) and (τa2 − νa3), and [(µX1 + νX2 + τX3), (νa1 − µa2)] =
[(µX1 + νX2 + τX3), (τa2 − νa3)] = [(νa1 − µa2), (τa2 − νa3)] = 0.

3. Main Properties Of |β, γ, x〉µντ

In Sec. 2, we construct the tripartite CES |β, γ, x〉µντ just oppositely to traditional
ways, and now we will check its orthogonality and completeness, to prove it span the
Hilbert space of tripartite states, and so make up a new kind of representation.
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3.1. Orthogonal Property

We investigate whether |β, γ, x〉µντ is mutual orthogonal or not. Explicitly, using the
eigenequations of tripartite CES, we examine the following matrix elements:

µντ 〈β′, γ′, x′| µX1 + νX2 + τX3

3
|β, γ, x〉µντ =

λx′√
2

µντ 〈β′, γ′, x′|β, γ, x〉µντ (13a)

=
λx√

2
µντ 〈β′, γ′, x′|β, γ, x〉µντ (13b)

which leads to

µντ 〈β′, γ′, x′|β, γ, x〉µντ (x′ − x) = 0 (14)

To derive the exact express of µντ 〈β′, γ′, x′|β, γ, x〉µντ , we will use the over-
completeness relation of the three-mode coherent state

∫

d2z1d
2z2d

2z3
π3

|z1, z2, z3〉〈z1, z2, z3| = 1 (15)

where

|z1, z2, z3〉 = D1(z1)D2(z2)D3(z3) |000〉

= exp

[

−1

2

(

|z1|2 + |z2|2 + |z3|2
)

+ z1a
†
1 + z2a

†
2 + z3a

†
3

]

|000〉 (16)

and Di(z) = exp(za†i −z∗ai). Using the definition of Tripartite CES in Equation (10),
the overlap is

〈z1, z2, z3|β, γ, x〉µντ

= exp

{[

−3

4
x2 − 1

6ν
(β∗γ + βγ∗)µτ2 − 1

6
|γ|2τ2

(

1 +
µ2

ν2

)

− 1

6
|β|2

(

ν2 + τ2
)

]

+
1

3λ

[(

β(µ2 + τ2) +
γµτ2

ν
+ 3xµ

)

z∗1 +
(

−βµν + γτ2 + 3xν
)

z∗2

+

(

−γ(µ
2 + ν2)τ

ν
− βµτ + 3xτ

)

z∗3

]

− 1

6λ2
(µz∗1 + νz∗2 + τz∗3)

2 − 1

2

(

|z1|2 + |z2|2 + |z3|2
)

}

(17)

To calculate µντ 〈β′, γ′, x′|β, γ, x〉µντ

〈β′, γ′, x′|β, γ, x〉 =

∫

d2z1d
2z2d

2z3
π3

〈β′, γ′, x′|z1, z2, z3〉 〈z1, z2, z3|β, γ, x〉

= exp

{

−µ
2 + ν2

6ν2

[

ν2(|β|2 + |β′|2) + τ2
(

|γ|2 + |γ′|2
)]

− µ

6ν
τ2 [βγ∗ + β∗γ + β′γ′∗ + β′∗γ′ − 2(βγ′∗ + β′∗γ)]

+
ν2 + τ2

3ν2
(ν2ββ′∗ + µ2γγ′∗)

}

δ(x− x′) (18)

In deriving Equation (18), we have used the mathematical formula
∫

d2z

π
exp

(

ζ|z|2 + ξz + ηz∗ + fz2 + gz∗2
)

=
1

√

ζ2 − 4fg
exp

[−ζξη + ξ2g + η2f

ζ2 − 4fg

]

(19)
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with its convergent condition

Re(ξ + f + g) < 0, Re

(

ζ2 − 4fg

ξ + f + g

)

< 0

or

Re(ξ − f − g) < 0, Re

(

ζ2 − 4fg

ξ − f − g

)

< 0

and the limiting form of Dirac’s delta function

δ(x) = lim
ε→0

1√
πε

exp

(

−x
2

ε

)

(20)

3.2. Completeness Relation

Now we shall check whether |β, γ, x〉µντ possesses the completeness relation. By virtue
of the technique of IWOP, and the normal ordered product of the three-mode vacuum
projector

|000〉〈000| =: exp(a†1a1 + a†2a2 + a†3a3) : (21)

we can smoothly prove the completeness relation of |β, γ, x〉µντ

∫

d2β

π

d2γ

π

∫ +∞

−∞

dx√
6π

|β, γ, x〉µντ µντ 〈β, γ, x|

=

∫

d2β

π

d2γ

π

∫ +∞

−∞

dx√
6π

: exp

{

−1

3

(

3√
2
x− µX1 + νX2 + τX3

λ

)2

− 1

3

[(

νβ∗ − νa†1 − µa†2
λ

)

(

νβ − νa1 − µa2

λ

)

]

− 1

3

[(

τγ∗ − τa†2 − νa†3
λ

)

(

τγ − τa2 − νa3

λ

)

]

−1

3

[(

τ

ν
(νβ∗ + µγ∗) − τa†1 − µa†3

λ

)

(

τ

ν
(νβ + µγ) − τa1 − µa3

λ

)

]}

:

=
3

τ2λ2

∫ +∞

−∞

dx√
6π

: exp

[

−1

3

(

3√
2
x− µX1 + νX2 + τX3

λ

)2
]

: (22)

=
1

τ2λ2
(23)

and also have
∫

d2β

π

d2γ

π
|β, γ, x〉µντ µντ 〈β, γ, x| =

3

τ2λ2
: exp

[

−3

(

1√
2
x− µX1 + νX2 + τX3

3λ

)2
]

: (24)
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3.3. The Conjugate State of |β, γ, x〉µντ

According to communication relationship between mechanic operator and quantum
state, once we known tripartite CES, we can derive its conjugate state. Three-particle’s
total momentum is P = Σ3

i=1Pi, (Pi = (ai−a†i )/(i
√

2)), P (νa1−µa2), and (τa2−νa3)
are permutable with each other as well, we make great efforts to find their common
eigenvector with eigenvalues λp/

√
2, νσλ and τκλ, expressed as |σ, κ, p〉µντ :

|σ, κ, p〉µντ = exp

{[

−3

4
p2 − 1

6ν
(σ∗κ+ σκ∗)µτ2 − 1

6
|κ|2τ2

(

1 +
µ2

ν2

)

− 1

6
|σ|2

(

ν2 + τ2
)

]

+
1

3λ

[(

σ(ν2 + τ2) +
κµτ2

ν
+ 3ipµ

)

a†1 +
(

−σµν + κτ2 + 3ipν
)

a†2

+

(

−κ(µ
2 + ν2)τ

ν
− σµτ + 3ipτ

)

a†3

]

+
1

6λ2

(

µa†1 + νa†2 + τa†3

)2
}

|000〉 (25)

The results after annihilation operators acting on |σ, κ, p〉µντ respectively are

a1 |σ, κ, p〉µντ =
1

3λ

[(

σ(ν2 + τ2) +
κµτ2

ν
+ 3ipµ

)

+
µ

λ

(

µa†1 + νa†2 + τa†3

)]

|σ, κ, p〉µντ (26a)

a2 |σ, κ, p〉µντ =
1

3λ

[(

−σµν + κτ2 + 3ipν
)

+
ν

λ

(

µa†1 + νa†2 + τa†3

)]

|σ, κ, x〉µντ (26b)

a3 |σ, κ, p〉µντ =
1

3λ

[(

−κ(µ
2 + ν2)τ

ν
− σµτ + 3ipτ

)

+
τ

λ

(

µa†1 + νa†2 + τa†3

)]

|σ, κ, p〉µντ (26c)

from the above equations, we get similar expressions of its eigenequations as those of
tripartite CES

1

3
(µP1 + νP2 + τP3) |σ, κ, p〉µντ =

λp√
2
|β, γ, x〉µντ (27a)

(νa1 − µa2) |σ, κ, p〉µντ = νσλ |σ, κ, p〉µντ (27b)

(τa2 − νa3) |σ, κ, p〉µντ = τκλ |σ, κ, p〉µντ (27c)

So far we get tripartite momentum CES. Using the IWOP technique we can prove
∫

d2σ

π

d2κ

π
|σ, κ, p〉µντ µντ 〈σ, κ, p| =

3

τ2λ2
: exp

[

−3

(

1√
2
p− µP1 + νP2 + τP3

3λ

)2
]

: (28)

so the completeness integration also holds, i.e.,
∫ ∞

−∞

dp√
6π

∫

d2σ

π

d2κ

π
|σ, κ, p〉µντ µντ 〈σ, κ, p| =

1

τ2λ2
(29)

Thus |σ, κ, p〉µντ µντ is the conjugate state of |β, γ, x〉µντ .
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4. Generating Tripartite CES By Asymmetric Beam-splitter(BS)

The tripartite CES as we show upper, can be generated by asymmetric BS operator.
One function of BS it to generate entangled state [19], and operator representation of
BS operating on incident optic field can be expressed (with phase-free) by [20]

Bij(θ) = exp
[

−θ
(

a†iaj − aia
†
j

)]

(30)

Letting the ideal single-mode maximal-squeezed state in mode 1, expressed by

|x = 0〉
1

= exp
[

− 1

2
a†1

]

|0〉
1
, and the vacuum state |0〉

2,3 in mode 2, 3 respectively

enter the two input ports of two sequential asymmetric BS and get overlapped, we
have

B23(ϕ)B12(θ) exp

[

−1

2
a†1

]

|0〉
1
⊗ |0〉

2
⊗ |0〉

3
=

exp

[

−1

2

(

a†1 cos(θ) + a†2 sin(θ) cos(ϕ) + a†3 sin(θ) sin(ϕ)
)2
]

|000〉 (31)

Since cos2(θ) + sin2(θ) cos2(ϕ) + sin2(θ) sin2(ϕ) = 1, so λ is introduced as 3λ2 =
µ2 + ν2 + τ2 as illustrated in Sec. 2. When θ = arccos( µ√

3λ
) and ϕ = arccos( ν√

ν2+τ2
),

the state out of the two sequential BS in Equation (31) becomes

exp

[

− 1

6λ2

(

µa†1 + νa†2 + τa†3

)2
]

|000〉
123

(32)

which is a three-mode squeezed state. Then operating three sequential displacement
operators D1(ǫ1), D2(ǫ2), D3(ǫ3) on three individual mode, where Di(ǫ) writes

Di(ǫ) = exp(ǫa†i − ǫ∗ai) (33)

and the displacements ǫ1, ǫ2, ǫ3 are

ǫ1 =
2βν(ν2 + τ2) + 2γµτ2 + 3xµν

6νλ
(34a)

ǫ2 =
−2βµν + 2γτ2 + 3xν

6λ
(34b)

ǫ3 =
−2βµντ − 2γτ(µ2 + ν2) + 3xντ

6νλ
(34c)

After these three sequential displacements, the ideal three-mode asymmetry
squeezed state will becomes

D1(ǫ1)D2(ǫ2)D3(ǫ3) exp

[

− 1

6λ2

(

µa†1 + νa†2 + τa†3

)2
]

|000〉

= exp

{

− ǫ1ǫ
∗
1 + ǫ2ǫ

∗
2 + ǫ3ǫ

∗
3

2
+ ǫ1a

†
1 + ǫ2a

†
2 + ǫ3a

†
3

− 1

6λ2

(

µ(a†1 − ǫ∗1) + ν(a†2 − ǫ∗2) + τ(a†3 − ǫ∗3)
)2
}

|000〉 (35)

Substitute the expression of ǫi into Equation (35), we find the state
is tripartite CES compared with Equation (10). And experimentally, we
can achieve these displacements (eg. D1(ǫ1)), by reflecting the light field

exp

[

− 1

6λ2

(

µa†1 + νa†2 + τa†3

)2
]

|000〉 from a partially reflecting mirror (say 99%

reflection and 1% transmission) and adding through the mirror a field that has been
phase and amplitude modulated according to the values µ, ν, τ , and β, γ, x. Thus
the tripartite CES |β, γ, x〉µντ can be implemented.
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5. Some Applications of |β, γ, x〉µντ

In this section, we briefly introduce some probably applications of the tripartite CES.

5.1. Wigner Operator

In atomic and quantum optic area, Wigner distribution as the quasi-classical
distribution [21, 22] well represent the non-classical properties of quantum state
through its partial negativity in quadrature phase. One basic way to obtain Wigner
distribution is to trace production between matrix density and Wigner operator [23].
Analogue to single mode Wigner function, and basing on the completeness and
orthogonality of tripartite CES, we now introduce the following ket-bra integration
∫

d2β

π

d2γ

π

∫ +∞

−∞

du

2π
√

6π
e3ipu/2

∣

∣

∣
β, γ, x+

u

2

〉

µντ µντ

〈

β, γ, x− u

2

∣

∣

∣
≡ △(p, x) (36)

Considering the explicit definition of |β, γ, x〉µντ in Equation (10) and employ the
IWOP technique, we can directly calculate out

△(p, x) =
1

πτ2λ2
: exp

[

−3

(

x√
2
− µX1 + νX2 + τX3

3λ

)2

−3

(

p√
2
− µP1 + νP2 + τP3

3λ

)2
]

: (37)

which is a generalization of the normally ordered form of the usual Wigner
operator. We may integrate ∆(p, x) out of x p, respectively, e.g.
∫ +∞

−∞
dx∆(p, x) =

√

2

3π

1

τ2λ2
: exp

[

−3

(

1√
2
p− µP1 + νP2 + τP3

3λ

)2
]

: (38a)

=
1

9

√

6

π

∫

d2σ

π

d2κ

π
|σ, κ, p〉µντ µντ 〈σ, κ, p| (38b)

∫ +∞

−∞
dp∆(p, x) =

√

2

3π

1

τ2λ2
: exp

[

−3

(

1√
2
x− µX1 + νX2 + τX3

3λ

)2
]

: (38c)

=
1

9

√

6

π

∫

d2β

π

d2γ

π
|β, γ, x〉µντ µντ 〈β, γ, x| (38d)

Following Wigner’s original idea of setting up a function in x-p phase whose
marginal distribution is the probability of finding a particle in coordinate space
and momentum space, respectively. we can immediately judge that the wigner
operator ∆(p, x) in equations (38d) and (38b) is just a marginal distributional Wigner
operator. Then the marginal distribution in the p-direction and its conjugate marginal
distributions in the x-direction are

∫ +∞

−∞
dx 〈ψ|∆(p, x) |ψ〉

=

√

2

3π

1

τ2λ2
〈ψ| : exp

[

−3

(

1√
2
p− µP1 + νP2 + τP3

3λ

)2
]

: |ψ〉

=

√

1

6π

∫

d2σ

π

d2κ

π

∣

∣

∣
〈ψ|σ, κ, p〉µντ

∣

∣

∣

2

(39a)
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∫ +∞

−∞
dp 〈ψ|∆(p, x) |ψ〉

=

√

2

3π

1

τ2λ2
〈ψ| : exp

[

−3

(

1√
2
x− µX1 + νX2 + τX3

3λ

)2
]

: |ψ〉

=

√

1

6π

∫

d2β

π

d2γ

π

∣

∣

∣
〈ψ|β, γ, x〉µντ

∣

∣

∣

2

(39b)

correspondingly. Furthermore, we should note that in this case the classical x-p phase
space corresponds to the operators X and P respectively.

5.2. Three-Mode Squeezing Operator

One important application of IWOP technique is to construct squeezed operator
no matter how complex the quantum states is in continuous variable quadrature
space [26,27]. In a similar way, We take a classical transformation x→ x

η in |β, γ, x〉µντ

to build a ket-bra integral,

S(η) = τ2λ2

∫

1

π2
d2βd2γ

∫ +∞

−∞

dx√
6ηπ

|β, γ, x/η〉µντ µντ 〈β, γ, x| (40)

Using the IWOP technique, we can directly perform the integration in Equation
(40) to obtain

S(η) = sech1/2(ζ) exp

{

− 1

6λ2
(µa†1 + νa†2 + τa†3)

2 tanh ζ

}

: exp

{

1

3λ2
(sechζ − 1)(µa†1 + νa†2 + τa†3)(µa1 + νa2 + τa3)

}

:

exp

{

1

6λ2
(µa1 + νa2 + τa3)

2 tanh ζ

}

(41)

which is a new three-mode squeezing operator with parameter η, and where η =
exp(ζ), sechζ = 2η/(1 + η2) and tanh ζ = (η2 − 1)/(1 + η2). To make this squeezing

more compact, we introduce the notation R† =
µa†

1
+νa†

2
+τa†

3√
3λ

, and using the following

formula : exp[(eζ − 1)a†a] := exp(ζa†a), we can rewrite the Equation (41) as

S(η) = sech1/2(ζ) exp

{

−1

2
R†2 tanh ζ

}

× : exp
{

(sechζ − 1)R†R
}

: exp

{

1

2
R2 tanh ζ

}

= sech1/2(ζ) exp

{

−1

2
R†2 tanh ζ

}

× exp
{

R†R ln sechζ
}

exp

{

1

2
R2 tanh ζ

}

(42)

And we can also find that R compose a SU(1, 1) Lie algebra as

[R,R†] = 1, [
1

2
R2,

1

2
R†2] = R†R+

1

2
(43)

The squeezing operator S(η) squeezes states |β, γ, x〉µντ in a natural way

S(η) |β, γ, x〉µντ =
1√
η
|β, γ, x/η〉µντ (44)
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Correspondingly, the three-mode squeezed vacuum state is

S(η) |000〉 = sech1/2(λ) exp

{

−1

6
(µa†1 + νa†2 + τa†3)

2 tanhλ

}

|000〉 (45)

Using Equation (42) and the Baker-Hausdroff formula

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · · (46)

we see that

S(η)aiS(η)−1 = ai +
µi√
3λ

[

R(cosh ζ − 1) +R† sinh ζ
]

(47)

where µ1,2,3 = µ, ν, τ . It then follows from Equation (8) that

S(η)XiS(η)−1 = Xi + µiA(eζ − 1) (48a)

S(η)PiS(η)−1 = Pi + µiB(e−ζ − 1) (48b)

and A =
∑

j µjXj/(3λ
2), B =

∑

j µjPj/(3λ
2). So, under the S(η) transformation the

three quadrtures of the three-mode optical field become

S(η)(X1 +X2 +X3)S(η)−1 = X1 +X2 +X3 + (µ+ ν + τ)A(eζ − 1) (49a)

S(η)(P1 + P2 + P3)S(η)−1 = P1 + P2 + P3 + (µ+ ν + τ)B(e−ζ − 1) (49b)

Operating S(η)−1 on the three-mode vacuum state, we obtain the squeezed
vacuum state

S(η)−1 |000〉 = sech1/2ζ exp

[

tanh ζ

2
R†2
]

|000〉 ≡ | 〉ρ (50)

The expectation values of the two quadratures in this state are

ρ 〈 | (X1 +X2 +X3) | 〉ρ = 0, ρ 〈 | (P1 + P2 + P3) | 〉ρ = 0 (51)

thus the variance of the two quadrature are

ρ 〈 |∆(X1 +X2 +X3)
2 | 〉ρ = ρ 〈 | (X1 +X2 +X3)

2 | 〉ρ (52a)

=
1

2

[

(µ+ ν + τ)2

3λ2
(e2ζ − 1) + 3

]

(52b)

ρ 〈 |∆(P1 + P2 + P3)
2 | 〉ρ = ρ 〈 | (P1 + P2 + P3)

2 | 〉ρ (52c)

=
1

2

[

(µ+ ν + τ)2

3λ2
(e−2ζ − 1) + 3

]

(52d)

and the minimum uncertainty relation is

∆(X1 +X2 +X3)
2∆(P1 + P2 + P3)

2 =

1

4

[

(µ+ ν + τ)2

3λ2
(e2ζ − 1) + 3

] [

(µ+ ν + τ)2

3λ2
(e−2ζ − 1) + 3

]

(53)

In particular, when µ = ν = τ = 1, the squeezed vacuum state | 〉ρ reduces to the
usual three-mode squeezed vacuum state, equations (52b), (52d),respectively, become

ρ 〈 |∆(X1 +X2 +X3)
2 | 〉ρ =

3

2
e2ζ (54)

ρ 〈 |∆(P1 + P2 + P3)
2 | 〉ρ =

3

2
e−2ζ (55)

∆(X1 +X2 +X3)∆(P1 + P2 + P3) =
9

4
(56)
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as expected. On the other hand, due to 3λ2 ≥ µν+ ντ +µτ , i.e. (3λ)2 ≥ (µ+ ν+ τ)2.
For ζ ≥ 0, from equations (52b)and (52d), we have

ρ 〈 |∆(X1 +X2 +X3)
2 | 〉ρ =

1

2

[

(µ+ ν + τ)2

3λ2
(e2ζ − 1) + 3

]

(57a)

≤ 3

2
e2ζ (57b)

ρ 〈 |∆(P1 + P2 + P3)
2 | 〉ρ =

1

2

[

(µ+ ν + τ)2

3λ2
(e−2ζ − 1) + 3

]

(57c)

≥ 3

2
e−2ζ (57d)

which implies that the squeezed vacuum state | 〉ρ may exhibit stronger squeezing
in one quadrature than that of the usual two-mode squeezed vacuum state while
exhibiting weaker squeezing in another quadrature.

6. Conclusion

In summary, we have brought out the ways to construct tripartite CES just contrary
the traditional method and check it correckness. We analyzed some major properties
of the tripartite CES, i.e. the completeness relation and partly orthogonality. And a
simple experimental protocol to produce tripartite CES was also proposed by using an
asymmetric BS, which provides a new way to predict new tripartite squeezed operator.
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